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Fig. 1. The interface of SRVis. (A-E) The ranking view presents the rankings of alternatives and the cause of rankings with a
matrix-based context-integrated visualization. Flexible spatial filtering features provided by B, C, and E enable users to conveniently
explore and identify spatial patterns in the ranking datasets. (F) The inspector view adopts a table-based ranking technique to show all
alternatives in the filtered region. A projection view is also utilized to assist users in finding similar alternatives based on their criteria.
(G) The snapshot view allows users to save snapshots of rankings and criterion weights, such that users can compare these snapshots
to find insights from the comparative analysis.

Abstract—Interactive ranking techniques have substantially promoted analysts’ ability in making judicious and informed decisions
effectively based on multiple criteria. However, the existing techniques cannot satisfactorily support the analysis tasks involved in
ranking large-scale spatial alternatives, such as selecting optimal locations for chain stores, where the complex spatial contexts involved
are essential to the decision-making process. Limitations observed in the prior attempts of integrating rankings with spatial contexts
motivate us to develop a context-integrated visual ranking technique. Based on a set of generic design requirements we summarized
by collaborating with domain experts, we propose SRVis, a novel spatial ranking visualization technique that supports efficient spatial
multi-criteria decision-making processes by addressing three major challenges in the aforementioned context integration, namely,
a) the presentation of spatial rankings and contexts, b) the scalability of rankings’ visual representations, and c) the analysis of
context-integrated spatial rankings. Specifically, we encode massive rankings and their cause with scalable matrix-based visualizations
and stacked bar charts based on a novel two-phase optimization framework that minimizes the information loss, and the flexible spatial
filtering and intuitive comparative analysis are adopted to enable the in-depth evaluation of the rankings and assist users in selecting
the best spatial alternative. The effectiveness of the proposed technique has been evaluated and demonstrated with an empirical study
of optimization methods, two case studies, and expert interviews.

Index Terms—Spatial ranking, visualization.
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Visual ranking is an ubiquitous technique that helps users transparently
make informed decisions via the intuitive visual representations of
alternatives, such as spreadsheets, line charts, and stacked bar charts.
This technique has been extensively adopted recently in various multi-
criteria decision-making (MCDM) scenarios, including information
retrieval [25], sports data analysis [15], and urban planning [30]. By
sorting available alternatives in descending order based on the assigned
scores, the preferences of decision-makers can be efficiently captured
and characterized with visualizations.

Traditional visual ranking techniques excel at depicting the rankings
of self-contained alternatives, which can be described with a set of cri-
teria without introducing any additional context. However, challenges
arise when applying these techniques to ranking spatial alternatives,



which can be difficult to characterize with a few numerical criteria
owing to the complexity of the corresponding spatial contexts. For
example, in a classic spatial MCDM scenario in which users intend
to search for an ideal house to rent, presenting rankings without con-
texts, such as road maps, may restrict users to a laborious browsing
of a tedious list of candidates. Even with geo-filtering techniques,
such as nearest neighbor queries [48], users cannot immediately grasp
the detailed environments surrounding candidates from vague textual
descriptions, such as addresses or distances.

To improve the reliability of spatial MCDM processes with compre-
hensive spatial contexts, spatial applications have implemented various
context-integrated visual ranking techniques, which can be summa-
rized into three categories, namely, point-, line-, and region-based
techniques [22, 30, 50, 59] as introduced in Sect. 3. Most of these
techniques have achieved preliminary integration either by directly
encoding the rankings in the contexts or by illustrating the correspon-
dence of alternatives between a ranked view and contexts. However,
both approaches share three major drawbacks: a) the insufficient inte-
gration of contexts hinders the discovery of clear spatial patterns on the
rankings and cause behind the rankings, which are crucial for making
spatial decisions based on multiple criteria; b) these techniques do not
scale well with the number of alternatives, producing severe visual
clutters as the visual representations of these alternatives overlap with
one another and occlude the underlying contexts; and c) the lack of
flexible spatial filtering and comparison features in these techniques
prohibits an in-depth evaluation of the rankings.

These limitations motivate us to propose a context-integrated vi-
sual ranking technique that facilitates the analysis of massive spatial
rankings and supports effective spatial MCDM processes. However,
developing such a technique poses three major challenges:

Presentation of spatial rankings and contexts. Seamlessly incorpo-
rating the rankings with the contexts significantly improves the effi-
ciency of making reliable spatial decisions in various spatial MCDM
scenarios. For example, establishing chain stores requires analysts to
evaluate top-ranked locations against various spatial contexts, such as
population density and nearby competitors. Such contextual evaluation
highly demands a thoughtful design that tightly connects the numeri-
cally abstracted rankings and their cause with complex spatial contexts,
which remain an unresolved challenge.
Scalability of rankings’ visual representations. Spatial decision-
making processes generally involve a substantial number of alternatives.
For example, in a location selection scenario for billboards, users must
evaluate numerous candidates because billboards can be placed nearly
everywhere along roads. However, spaces left to visualize the rankings
and their cause are extremely limited in the spatial contexts owing
to the dense information encoded on the maps. Such limitation poses
challenges on developing a clutter-free visual representation for massive
alternatives, enabling the multi-level exploration of contextual rankings.
Analysis of context-integrated spatial rankings. Analytical features,
such as filtering and comparison, help users locate and evaluate emi-
nent alternatives and deliver reliable spatial decision-making processes.
For example, iteratively constructing an effective ranking model may
require users to inspect the top-ranked alternatives in a specific area
and investigate the spatial variation in rankings as the criterion weights
are changed. Such requirements demand an interactive implementation
of flexible spatial filtering and extensive comparative analysis adapted
to the contexts, which constitutes the third challenge.

This study is conducted in close collaboration with domain experts to
summarize the design requirements for an effective spatial ranking visu-
alization technique. Based on these requirements, we propose SRVis, a
novel visual ranking technique that addresses the aforementioned chal-
lenges in the following aspects: a) Presentation: Rankings are tightly
coupled with spatial contexts via matrices and stacked bars, which
provide intuitive visual summaries of spatial ranking statistics verti-
cally and horizontally; b) Scalability: The aggregated representation of
rankings enables the effective visualization of millions of alternatives.
Specifically, we encode the cause of rankings with compact stacked
bars via a two-phase optimization framework, which minimizes the in-
formation loss and improves the bar layout based on greedy heuristics;
c) Analysis: Flexible spatial filtering allows users to interactively locate
interesting regions, which can be compared with different criterion

weights to eventually enhance the fidelity of the final spatial decisions.
Our main contributions are summarized as follows:

• We characterize the design requirements for an effective context-
integrated visual ranking technique that supports generic spatial
MCDM scenarios based on large-scale spatial rankings.

• We develop SRVis, a novel visual ranking technique that incor-
porates the interactive and scalable matrix-based representations
of massive rankings with maps to enable the flexible filtering and
comparative analysis of the rankings. In particular, we encode
the cause of rankings with stacked bar charts based on a novel
two-phase optimization framework.

2 RELATED WORK

This section presents relevant studies on spatial and ranking visualiza-
tion techniques.

2.1 Spatial Visualization
Generally, spatial visualization techniques can be categorized into
three types based on which visual elements are used, namely, point-,
line-, and region-based techniques [60]. Point-based techniques enable
users to observe spatial objects or events by directly plotting their
locations on spatial contexts, including maps, as points [5, 26, 31, 38].
The overlaps among points can be resolved using data aggregation
techniques, such as KDE-based heatmaps [30, 32, 34]. Line-based
techniques are frequently adopted in visualizing linear spatial data, such
as trajectories with lines and curves [1,20,43]. Region-based techniques
aggregate and present spatial datasets based on a predetermined space
division [2]. This study leverages the aforementioned point-based
techniques to visualize alternatives on spatial contexts.

2.2 Generic Ranking Visualization
Visual ranking emerges from the longstanding popularity of ranking-
based decision making [7, 8]. By employing generic ranking visualiza-
tions, visual analytics systems can assist users in transparently ranking
alternatives and making reliable and informed decisions. Inspired by
the classification of visual ranking techniques proposed by Gratzl et
al. [19], we further categorize these techniques based on the number
of criteria involved in the rankings (univariate or multivariate) and
the number of rankings per alternative computed from these criteria
(single or multiple), thereby producing four types of visual ranking
techniques: univariate single-ranking, univariate multiple-ranking, mul-
tivariate single-ranking, and multivariate multiple-ranking techniques.

Univariate single-ranking techniques are ubiquitous in daily life.
These techniques generally order alternatives by a criterion and as-
sign a ranking for each alternative. Among these techniques, spread-
sheets [47] and bar charts [37] are the most extensively adopted ones.
Univariate multiple-ranking techniques focus on evaluating and com-
paring multiple sets of rankings involving only one criterion, such
as the rankings evolving with time [58]. Kidwell et al. [24] studied
incomplete and partially ranked data by projecting multiple rankings
with multi-dimensional scaling. Behrisch et al. [9] visualized mul-
tiple sets of rankings with small multiples. RankExplorer [44] and
TrajRank [36] illustrated time-varying rankings with stack graphs. In
addition, charts [6, 42] and glyphs [33, 57] are also extensively utilized
to present such rankings. Multivariate single-ranking techniques vi-
sualize rankings involving multiple criteria of alternatives. Most of
the approaches are table-based, such as ValueChart [13], ValueChart
Plus [7], and Podium [55]. In addition, techniques like dimensional
reduction [25] and glyphs [15] are also proposed in the prior studies.
Multivariate multiple-ranking techniques are developed to enhance the
analytical ability of single-ranking ones, helping users perceive and
compare multiple sets of rankings based on several relevant criteria.
Gratzl et al. [19] illustrated the ranking difference via a slope chart,
in which the corresponding items between two ranked lists are con-
nected with lines. Vuillemot and Perin [54] proposed a technique that
tracks a time-varying multi-criteria ranking table with line charts and
interaction-based animations.

This study develops a multivariate multiple-ranking technique that
visualizes the spatial rankings generated from multiple criteria and help
users analyze massive spatial ranking datasets conveniently by enabling
them to compare multiple sets of rankings.



2.3 Spatial Ranking Visualization
In this section, we review the existing techniques for visualizing spatial
rankings that involves the integration of rankings with their spatial
contexts and summarize these techniques into three categories based
on the types of visual elements used:

Point-based. Numerous techniques have been proposed to encode
abstract rankings in the spatial contexts based on points. Most of
these techniques utilize glyph representations, such as markers [59],
colored circles [29], utility signs [3], and decision clocks [28]. Notably,
Andrienko et al. [4] proposed utility symbols, a novel visualization
technique for multivariate spatial rankings that creatively embeds the
ranking of each object into a map with bar or pie charts, enabling
the efficient context-aware analysis of multi-criteria spatial rankings.
However, limited screen space prevents these techniques from scaling
well with the number of alternatives, cluttering the underlying spatial
contexts and producing severe overlapping between glyphs as the size
of spatial data grows. Moreover, these techniques do not support direct
visual comparisons between two different sets of rankings.

Line-based. This set of techniques aims to depict spatial rankings
with lines, generally by connecting the corresponding alternatives based
on lines between two coordinated views: one illustrating the abstract
rankings with a table or list and the other depicting the spatial contexts
of alternatives. Such linking can be achieved either by explicitly draw-
ing lines [30] or by highlighting the selected alternatives on edge [22].
However, these techniques also have scalability issues and rely heavily
on user interactions, which interfere with users’ direct perception of
the correspondence between abstract rankings and spatial contexts.

Region-based. In certain spatial decision-making scenarios wherein
the alternatives involve regions, the rankings of these regions can be
directly illustrated in spatial contexts using colors [22, 50, 51]. Despite
the intuitiveness of this method, the scalability of such an encoding is
strongly constrained by the discriminability of colors [46]. Another
popular integration approach is to transform maps based on the rank-
ings, such as cartogram [17, 40]. However, the interpretability of the
transformed spatial contexts remains controversial [23, 49].

Motivated by the issues found in the aforementioned state-of-the-
art techniques and the challenges concluded in the introduction, we
develop SRVis, a point-based technique that visualizes large-scale
spatial rankings and integrates these rankings with their spatial contexts
intuitively without severe visual clutters.

3 BACKGROUND AND REQUIREMENT ANALYSIS

This section summarizes several crucial requirements to design an
effective visualization technique that enables the efficient presentation
and exploration of massive spatial ranking datasets.

In the past year, we collaborated closely with two senior researchers
from the business intelligence department of a large corporation, both
of whom have decades of experience in geospatial data analysis and
location-based marketing. Our initial goal was to design a visual
analytics system that assists our collaborators in determining optimal
locations for new chain stores based on multiple criteria, including the
rent, population, the number of competitors nearby, etc. This process is
known as the classic MCDM scenarios [52, 53], for which the solution
framework generally comprises three steps: 1) identify relevant criteria
and alternatives; 2) characterize decision makers’ preferences; and 3)
determine a ranking for each alternative based on preferences.

Efforts have been devoted to enable efficient MCDM processes with
the visualization of rankings, such as scatterplots [25], tables [19, 55],
and glyphs [15]. However, a few of our discussions with the domain
experts on requirements reveal additional insights. Apart from the
rankings, making informed decisions in spatial MCDM scenarios (e.g.,
the aforementioned one) also requires spatial contexts (e.g., maps).
These contexts are essential to the decision-making effectiveness but
difficult to capture with automatic processing [22]. Through a literature
review, we found that the existing ranking visualization techniques
could not satisfactorily integrate spatial rankings with their contexts due
to several issues including the scalability as summarized in Sect. 2.3.

The lack of the considerate integration between the rankings and
the spatial contexts motivates us to extend and generalize our approach
to support the effective spatial decision-making based on the rankings
of alternatives and consequently benefit a wider set of spatial appli-

cations. By following the nested model for visualization design and
validation [39], we iteratively characterize the problem and identify the
design requirements by reviewing relevant literature and conducting
four interview sessions with the experts. We conclude the iteration with
the requirements summarized as follows.

R.1: Present spatial rankings. Where are the alternatives involved
in ranking? In which area do the alternatives tend to have higher
rankings? Are the rankings affected by additional spatial contexts?
Thus, a clear visual summary is required to assist users in efficiently
comprehending the spatial distribution of the alternatives and their rank-
ings. Moreover, the proposed design should be capable of incorporating
this summary with supportive spatial contexts that enable a transparent
decision-making process, such as road map, traffic map, and population
density map, without introducing severe occlusions and visual clutters.
R.2: Unfold the cause of spatial rankings. How are the spatial
rankings computed from the criteria? Which area is dominated by a
criterion? Are two criteria spatially correlated? Since the numerically
determined rankings cannot constantly provide an accurate represen-
tation of the performance of the alternatives, each criterion should be
visualized in conjunction with spatial contexts to elaborate the formula-
tion of these rankings and reveal insightful patterns of spatial trends.
In addition, these visualized criteria can enable the informed adjust-
ment of criterion weights by suggesting the reason for potential ranking
anomalies based on the information provided by spatial contexts.
R.3: Scale with the number of alternatives. How are large-scale
spatial ranking datasets investigated? How can numerous alternatives
and their rankings be preceived spatially? Although spatial datasets
generally comprise numerous alternatives, the scalability of state-of-
the-art spatial ranking techniques remains unsatisfactory. To support
an effective decision-making process, the proposed design should scale
well with the number of alternatives in the datasets, thereby providing
high-level insights into the rankings of these alternatives to assist further
investigations of low-level details.
R.4: Support flexible spatial filtering. How can analysts focus on
the alternatives in a particularly interesting area? How can a filtered
spatial view of the alternatives be obtained similar to a given one?
As a fundamental data exploration method, filtering allows users to
dissect and analyze complex spatial ranking datasets with ease. By
incorporating spatial filtering features in the proposed design, users can
concentrate on the region of their interest in and exclude unwanted or
irrelevant alternatives. Furthermore, the design should support spatial
filtering based on the inherent hierarchy of the alternatives, such as
administrative divisions.
R.5: Enable comparative analysis of spatial rankings. What is the
difference between the rankings of alternatives in two areas? How do
the rankings differ spatially if criterion weights are changed? Which al-
ternative is the best? To help users extensively evaluate the performance
of alternatives, the proposed design should provide two comparative
features that facilitate a multi-faceted spatial analysis: a) visualize the
difference in the rankings and their causes between two given regions;
and b) indicate the variation in rankings caused by the modification of
criterion weights. The design should also implement basic comparative
features, such as sorting the alternatives based on the rankings gener-
ated from one or more criteria. Such features are definitely necessary
when determining the best option.

4 CONTEXT-INTEGRATED VISUAL RANKING TECHNIQUE

This section presents SRVis, a novel context-integrated visual rank-
ing technique that facilitates the effective presentation and analysis
of massive spatial rankings. To support the requirements summarized
in Sect. 3, SRVis comprises three coordinated views, namely, ranking
(Fig. 1A), inspector (Fig. 1F), and snapshot (Fig. 1G) views. In the
ranking view, the locations of alternatives are plotted on a map, along
with two ranking matrices summarizing the statistics of rankings placed
to the top and the left of the map (R.1, R.3). To the right and bottom
of the map are two criteria charts that help users efficiently grasp the
criteria distribution of spatially corresponded alternatives and under-
stand the cause of rankings (R.2, R.3). In addition, the map, matrices,
and criteria charts are linked together, such that users may brush on
them to interactively locate interesting regions (R.4). The alternatives
in the selected regions will then be presented in the inspector view. The
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Fig. 2. The design of the ranking view. (A, D-G, L) A scalable matrix-based visual representation of spatial rankings based on the aggregation of the
vertical and horizontal map slices; (B, H, I) Comparing two sets of rankings in the comparison mode of the ranking view; (C, J, K) The design of
criteria charts that spatially depict the cause of rankings.

inspector view also provides detailed information on each alternative
and allows users to filter and group alternatives based on the value and
similarity of criteria (R.4). Furthermore, users can save regions with
the weights of criteria in the snapshot view and perform multi-faceted
comparative analyses between two recorded regions (R.5).

4.1 Ranking View
The ranking view (Fig. 1A) presents the rankings of massive alternatives
and the cause of these rankings in conjunction with the spatial contexts
illustrated with a map. The visual design of the ranking view is depicted
in the following sections in three aspects, namely, the visualization of
the spatial contexts, rankings, and the cause of rankings.

4.1.1 Visualizing Spatial Contexts
Spatial contexts help users efficiently grasp and evaluate the surround-
ing environments of alternatives in various spatial decision-making sce-
narios. Thus, SRVis adopts the map-centred exploratory approach [22]
by visualizing the spatial contexts with a map (Fig. 2L), wherein small
blue circles encode the locations of alternatives. We reduce the size
of circles and use a consistent color for every circle to minimize the
occlusion and visual interference of underlying spatial contexts. In
addition, users can overlay additional spatial contexts on the map, such
as the population density heatmap or the locations of competitors. They
can also draw polygons on the map to create a selection of interesting
alternatives, thereby enabling interactive spatial filtering (R.4).

4.1.2 Visualizing Rankings
To visualize the spatial distribution of massive rankings, we divide
the rankings evenly into several ranking groups and encode the spatial
distribution of these groups with a highly scalable visual representation
(Fig. 2A) based on matrices and bar charts (R.1, R.3). The visual
representation is further extended (Fig. 2B) to support the comparison
between two different sets of rankings (R.5).
Encoding rankings with matrices. Two ranking matrices (Fig. 2E)
are placed to the top and the left of the map, respectively. Each column
of the top matrix and each row of the left matrix is aligned with a vertical
or horizontal slice of the map. The alternatives covered by a map slice
are partitioned based on their ranking groups and accumulated in the
corresponding cells of the matrices. The cells (Fig. 2G) are arranged
in descending order of ranking groups (i.e., from high- to low-ranked)
from the outer to the inner of matrices, and the opacity of each cell
encodes the density of alternatives in the corresponding ranking group.
Moreover, a bar chart (Fig. 2F) is laid at the outer edge of each matrix
to illustrate the number of alternatives covered by the corresponding
map slices. Users can brush and select an eminent area on the matrices
or bar charts and apply spatial and ranking filters simultaneously to
focus on the alternatives belonging to the specified ranking groups in
the designated region (R.4).

Encoding fluctuations in rankings. A fluctuation matrix (Fig. 2D)
appears at the upper left corner of the ranking view when alternatives
are re-ranked owing to the modification of criterion weights (R.5). The
opacity of the cell at the i-th row and j-th column encodes:

f (i, j) =
|Ri→ R j|
|Ri∪R j|

,

where Ri and R j correspond to the i-th and j-th ranking groups, re-
spectively, and Ri → R j represents the set of the alternatives in the
ranking group R j that previously belong to Ri. For intuitiveness, we
add arrows at the edge of the matrix to signify the flow directions of
the alternatives and allow users to interactively hover over a cell and
highlight the corresponding ranking groups in the ranking matrices.

4.1.3 Visualizing Cause of Rankings

To better comprehend the formulation of rankings and identify spatial
patterns in such formulation, users must be able to determine the cause
of rankings spatially (R.2). Inspired by ValueCharts [13], we model the
cause of rankings and present the spatial distribution of the cause with
tailored stacked bar charts called criteria charts. In addition, given the
scalability consideration (R.3), we optimize the bar layout in criteria
charts with a novel two-phase framework based on greedy heuristics,
enabling a scalable and legible design of the proposed charts.
Modeling the cause of rankings. This study ranks alternatives using
the simple additive weighting (SAW) technique [21], which has been
extensively adopted in various MCDM scenarios. Suppose m relevant
criteria are identified, we denote the j-th normalized criterion value of
the i-th alternative by ci j. Then, scores are computed with

si =
m

∑
j=1

w jci j,

where w j is the weight assigned to the j-th criterion and the sum of
weights ∑ j w j = 1. Rankings can be further obtained from sorting
alternatives by the computed scores in descending order. Hence, the
weighted criteria that formulate the score of an alternative are partic-
ularly important for analysts to understand the cause of rankings. To
facilitate the spatial interpretability of rankings, we integrate the vi-
sualization of weighted criteria with a map in the proposed design as
described in the following section.
Encoding the spatial distribution of weighted criteria. Similar to
the ranking matrices, two criteria charts (Fig. 2C) are placed to the
right and the bottom of the map, respectively. Each chart consists of a
series of criteria bars (Fig. 2J), associated with the alternatives covered
by the corresponding vertical or horizontal map slices. In each criteria
bar, the distribution of a weighted criterion is visualized with a colored
compact bar chart. Moreover, each bar in these compact bar charts



represents a group of alternatives, and the height of the bar encodes the
mean of the weighted criterion values of these alternatives. To reflect
the distribution of overall scores, these bar charts are further stacked on
top of each other. Additionally, users can toggle the stacking baseline
and change the stacking order of the criteria (Fig. 2K), thereby focusing
on the distribution of a specific criterion or comparing between the dis-
tributions of multiple criteria. Furthermore, users can toggle the chart
to show only the criteria values of the best- or the worst-performing
alternatives. Thus, the design enables users to quickly grasp the spatial
distribution of each criterion and the score and identify spatial patterns
in the rankings and the cause of the alternatives’ rankings.
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Fig. 3. (A) 100 compactly plotted stacked bars; (B) Sample alternatives
by averaging without reordering; (C) The wiggling result obtained after
phase I; (D) A legible layout obtained after phase II; (E) Compute Gi j
from Fi j; (F) Owing to larger visual regions, step lines are more legible
and easy to compare than curves at the borders of criteria bars.

Improving the layout of criteria bars. While the criteria are being
visualized in the compact criteria bars, the distributions of the criteria
may become illegible if alternatives are not aggregated. For example,
Fig. 3A compactly plots the distributions of three criteria of a hundred
randomly-generated alternatives with one stacked bar drawn for each
alternative. However, almost no useful information can be obtained
from such a plot because: a) the horizontal borders of each bar are indis-
tinguishable due to excessive compression; and b) the bars of the same
color (i.e., representing the same criterion) are not vertically continuous,
leading to severe visual clutters. These two issues can be addressed by
aggregating alternatives (scalability constraint) and reducing criterion
wiggles (legibility constraint), respectively. However, as we shall see
immediately, these two constraints inherently conflict with each other,
thereby demanding a two-phase optimization framework.
Phase I: Improving the scalability via aggregation. To develop a scal-
able visual representation of criterion distributions, we sample the
aforementioned stacked bars by taking the mean of the weighted crite-
rion values of several continuous alternatives. Formally, we define p as
the number of alternatives in each sample. p can be selected adaptively,
such that the number of samples in a criteria bar will not exceed a given
threshold, ensuring the visibility of the individual group of alternatives.
Without the loss of generality, we assume the number of alternatives
n is divisible by p. First, we denote the j-th weighted criterion of the
i-th alternative with fi j, such that fi j = w jci j. Then, we obtain n/p
samples by averaging the weighted criteria of alternatives, where the
value of the j-th criterion of the i-th sample is defined as

Fi j =
1
p

pi

∑
k=p(i−1)+1

fk j.

Although a clearer layout of criteria bars has been established with
grouped alternatives (Fig. 3B), such a layout cannot accurately reflect
the real distribution of criterion values. In each sample, the local distri-
butions of weighted criteria are lost during the averaging, resulting in a
global distribution too smooth to observe important statistics. There-
fore, the sampling order of alternatives must be carefully selected (i.e.,
reorder the alternatives optimally), such that the variance of weighted
criterion values in each sample are minimized. However, this objective
inherently conflicts with that of the legibility constraint, which inclines
towards minimizing inter-sample variance to produce a smooth distribu-
tion. Hence, in this phase, we concentrate on the accuracy of sampled
distributions, which helps users obtain correct information, and leave
the optimization of legibility for the next phase after the alternatives
are sampled.

To preserve an accurate criteria distribution after sampling by mini-
mizing the intra-sample variance, we consider two situations, namely,

Algorithm 1 Minimize the loss based on greedy heuristics.
INPUT: the number of alternatives n, the number of criteria m, an array f of size n×m
describing the weighted criteria of alternatives, and the sample size p.
OUTPUT: An optimized sequence of alternatives f ′.

1: procedure LOCALLOSS(p, f , k) . Compute the loss of the k-th sample of size p.

2: return 1
m ∑

m
j=1

√
(∑

p(k+1)−1
i=pk ( fi j− 1

p ∑
p(k+1)−1
t=pk ft j)2)/p

3: procedure GREEDY( f , p)
4: iter← 0
5: do
6: iter← iter+1, swapped← FALSE

7: for u← 1 to n/p do
8: for i← pu to p(u+1)−1 do
9: for v← u+1 to n/p do

10: for j← pv to p(v+1)−1 do
11: oldLoss←LOCALLOSS(p, f , u)+LOCALLOSS(p, f , v)
12: swap fi and f j . Make a tentative swap.
13: newLoss←LOCALLOSS(p, f , u)+LOCALLOSS(p, f , v)
14: if newLoss < oldLoss then swapped← TRUE

15: else swap fi and f j . Revert to the old sequence.

16: while swapped and iter < MAX ITER
17: return f

univariate and multivariate rankings. If the rankings of alternatives only
involve a criterion, we can sort alternatives by their criterion value in
ascending order, thereby obtaining an optimal sequence of alternatives,
where the variance of each sample is minimized. In contrast, however, it
is difficult to obtain an optimal solution for multi-criteria scenarios with
similar methods. To characterize the information loss in the sampling
process, we first derive a metric based on root-mean-square deviation:

loss=
p

nm

n/p

∑
i=1

m

∑
j=1

√√√√∑
pi
k=p(i−1)+1( fk j−Fi j)2

p
,

where we compute the normalized deviation for each weighted criterion
of every alternative from the mean of the corresponding sample of the
criterion. Minimizing the loss is identical to the NP-hard Job-Shop
Scheduling problem [18], where each stacked bar can be seen as a job
scheduled to execute on n/p machines. However, the computational
cost of obtaining a decent solution with combinatorial optimization by
searching the permutations of alternatives is too expensive to support
real-time map interactions. Therefore, we approximate the optima by
adopting a greedy heuristic approach GREEDY, as illustrated in Alg. 1,
where we iteratively swapping alternatives (cf. line 12) whenever it
is possible to reduce the loss (cf. line 14). We also evaluate our
approach against several other approaches including RANDOM, SORTED,
and BRUTE-FORCE in Sect. 6.1. Eventually, alternatives are sampled
and aggregated based on the generated order to maintain the accuracy
of weighted criterion distributions.

Phase II: Improving the legibility via wiggle reduction. Sampled se-
quences obtained from the phase I can be seriously distorted because of
the discontinuity of criterion stacked bars between samples (Fig. 3C).
This can be alleviated by rearranging the order of the samples, minimiz-
ing the first derivatives of criterion values to create a smooth layout for
criteria bars. Inspired by the design of streamgraphs [12], we denote the
sum of Fi,1,Fi,2, ...,Fi,k by Gi,k (Fig. 3E) and adapt the 1-norm based
weighted wiggles proposed by Di Bartolomeo and Hu [16] as follows:

wwiggles=
n/p

∑
i=1

m−1

∑
j=1

Fi, j(
|G′i, j+1−G′i, j|

2
),

where the derivative G′i j can be computed with the central difference of
adjacent samples, such that G′i j = (Gi+1, j−Gi−1, j)/2. The wwiggles
tends to increase if the colored bars in the chart fluctuate, penalizing
the wiggles between samples by the size of bars. Similarly, the approxi-
mation of optima can be obtained with the aforementioned swap-based
greedy heuristic approach. With the wwiggles minimized, a smooth
and legible stacked layout can be obtained for each criteria bar (Fig. 3D).
Furthermore, we can apply such optimization to all criteria bars simul-
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Fig. 4. Two design alternatives for the spatial ranking visualization. (A)
Use circular maps instead of rectangular ones; (B) Illustrate rankings for
each alternative with a vertically correspondent view;

taneously while restricting the swaps of alternatives to occurring inside
the individual bars only, thereby enabling a refined global layout for
the entire criteria chart.

4.1.4 Comparative Analysis of Rankings
Users must frequently compare different sets of rankings to identify
the spatial patterns of alternatives (R.5). Generally, these ranking sets
can be obtained in the following scenarios: a) users want to see the
sensitivity of the rankings in a specific region with respect to a criterion
by modifying its weight; and b) users want to locate the difference in
the rankings of alternatives in two specific regions. In the scenarios
where ranking sets cannot be obtained directly, such as the second one,
we rank all alternatives first and then separate these rankings by regions,
consequently creating two ranking sets.

To visualize the difference between two ranking sets, we divide each
cell along its diagonal into blue and red triangles (Fig. 2H), and the
opacity of each triangle encodes the density of alternatives belonging
to the corresponding ranking set. A small white triangular arrow is
also placed at the center of each cell, pointing towards the ranking set
with high density of alternatives. Moreover, the bar charts (Fig. 2I) at
the outer edge of the ranking matrices and criteria charts are replaced
with diverging bar charts, each side of which illustrates the number of
spatially corresponded alternatives in a ranking set. In the diverging
bar charts, bars with higher opacity have more alternatives than their
corresponding bars at the other side. Points on the map are rendered
with three colors: a) blue: the point exists uniquely in the first ranking
set; b) red: the point exists uniquely in the second ranking set; c) purple:
the point exists in both ranking sets. Hence, the design enables users to
conveniently perceive and compare the ranking sets on the matrices in
terms of spatial and ranking distributions.

4.1.5 Design Alternatives
During the iterative development process of SRVis, we proposed several
design alternatives that helped us derive and refine the final design.
These alternatives are summarized in this section.
Visualizing context-integrated spatial rankings. The alternatives for
ranking matrices are presented as follows.

Circular versus rectangular: Rankings can be integrated with ei-
ther circular or rectangular maps. The design alternative illustrated
in Fig. 4A adopts a radial approach, which encodes the rankings in
the sectors of a disk around a circular map. Similarly, cells in the
sectors are arranged in descending order of ranking groups from the
outer to the inner part of the disk, and each sector is associated with
the alternatives covered by the corresponding radial slice of the map.
Although the radial design provides enhanced spatial correspondence
between the rankings and the spatial contexts on the map, this design
suffers the following three problems: a) users are less familiar with
circular maps; b) circular maps waste corner space; c) the alternatives
near the center of a circular map tend to suddenly jump to another
nonadjacent map sector, causing confusion when users zoom or move
the map. Therefore, a rectangular ranking visualization is implemented.

The scalability of rankings: Instead of aggregating rankings with
ranking groups, we proposed another design alternative (Fig. 4B) that
illustrates the direct correspondence between rankings and alternatives.
The design comprises a map and a ranking view. Each alternative on
the map vertically corresponds to and is linked with a dot in the ranking

view, and the vertical positions of the dots encode the rankings of alter-
natives, thereby enabling an intuitive comparison of rankings. However,
this design was rejected for three reasons: a) too many vertical lines
produce severe visual clutters and occlude the spatial contexts; b) only
the horizontal spatial distribution of rankings is reflected in the design;
c) such a encoding is space inefficient, and thus, the discriminability of
rankings suffers from visualizing thousands of alternatives with a single
positional visual channel if the space is limited. Hence, we iterate the
design by removing the visual elements that interfere with the spatial
contexts, presenting the horizontal and vertical spatial distributions,
and aggregating rankings with compact matrices. Such design leaves
extra room for the spatial contexts while allowing users to compare
detailed rankings in the inspector view.
Visualizing the cause of spatial rankings. ValueCharts [13] and
LineUp [19] propose encoding the criteria involved in ranking with
a stacked bar chart, in which each stacked bar corresponds to an al-
ternative. However, such a design is unsuitable to embed with spatial
contexts because alternatives are densely distributed on the map, which
leaves little room to illustrate the cause of rankings that corresponds
spatially with each alternative. Hence, we extend this approach and
develop a compact design that is capable of visualizing a group of
multi-criteria alternatives.

To encode the distributions of the criterion values and overall scores,
we draw a stacked bar for each alternative that represents the score by
stacking the weighted criterion values and compress these stacked bars
with averaging sampling to improve legibility. One design alternative is
to draw smooth curves similar to those in stream graphs instead of step
lines by interpolating the edge of stacked bars (see Fig. 3F). However,
we decide to stick with step lines because they tend to be more legible
and easier to compare than curves in compact bars if the difference in
the lengths of bars is significant.

4.2 Inspector View
To present the details (R.1) and cause (R.2) of rankings, we implement
a tailored table-based ValueChart [13] in the inspector view (Fig. 1F),
wherein each row corresponds to an alternative and each column corre-
sponds to a criterion. The normalized criterion values of each alterna-
tive in a table row are illustrated with the bars scaled with the widths of
columns, which are proportional to the weights of the corresponding
criteria. Users can adjust the weight for each criterion, stack the values
of multiple criteria, and rank alternatives based on the selected criteria.
The history of weight adjustments has been recorded and can be con-
trolled with undo and redo buttons to the left of columns. As such, the
changes in the rankings of alternatives caused by weight modifications
can be traced and replayed in the fluctuation matrix.

Furthermore, we project all alternatives with nonmetric multidimen-
sional scaling [27] based on the Euclidean distances between criterion
values onto a 2D projection view to demonstrate the potential similarity
of alternatives. Users can identify clusters of alternatives with such
projection and group alternatives accordingly in the inspector view to
obtain a spatial overview of the rankings and the cause of rankings
of similar alternatives (R.4). In addition, we visualize the criteria of
grouped alternatives with their averages, since violent variations of cri-
terion values in a cluster of similar alternatives do not occur frequently.

4.3 Snapshot View
The snapshot view (Fig. 1G) allows users to save a snapshot of the
current spatial selection of alternatives and the weights of criteria to
record interesting spatial patterns when the ranking datasets are ex-
plored. Each snapshot is visualized as a minimap of the area that covers
the selected alternatives, with a stacked bar underneath illustrating
the assignment of criterion weights. In addition, users can restore the
snapshots to the ranking and inspector views by clicking on them.

4.4 Interactions
To reveal the spatial patterns of rankings, we implement flexible analyt-
ical features including spatial filtering (R.4) and comparison (R.5) with
the interactions summarized as follows.
Multiple coordinated views. Alternatives are presented in both rank-
ing and inspector views. To help users further investigate the detailed
rankings in the inspector view based on the spatial patterns identified
in the ranking view, we illustrate the correspondence of alternatives



between these two views with interactions. When users hover over
an alternative in either view, the size of the corresponding circle on
the map will be increased, and the cells in ranking matrices, criteria
bar, row in the inspector view, and projected point associated with the
alternative will be highlighted. Hence, the effective search and analysis
of alternatives are enabled across multiple coordinated views.
Spatially filtering alternatives. To empower intuitive and informed
spatial filtering, SRVis allows users to create a spatial selection of alter-
natives flexibly. The selection can be constructed by brushing on the
ranking matrices and criteria charts, allowing users to filter alternatives
spatially based on the number of alternatives and the distribution of
rankings and criteria in the corresponding map slices. In addition, users
can draw polygons on the map to include or exclude the alternatives in
the polygons from the selection. The selection can be further refined
by removing alternatives in the inspector view, which maintains all
alternatives in the selection.
Comparing snapshots. Users can make comparisons between snap-
shots by dragging a snapshot onto another in the snapshot view. While
comparing two sets of rankings in the snapshots obtained from different
regions, the ranking view will enter the comparison mode, in which
each matrix cell is split in half (Fig. 2H). Then, each bar chart diverges
to represent both ranking sets (Fig. 2I). Moreover, users can obtain
the ranking difference (e.g., increased, decreased, unchanged, and new
rankings) of a snapshot compared with another snapshot from the glyph
generated for each row.

5 IMPLEMENTATION

We implement SRVis in JavaScript in conjunction with several libraries
including Vue.js, D3 [10], and Turf.js. SRVis specifically comprises
two major parts, namely, frontend and backend. The backend driven by
Node.js computes projections for the alternatives and serves the spatial
ranking data for the frontend. The frontend running directly in web
browsers presents the rankings with the techniques described above and
assists users in analyzing the data through interactive visualizations.

During the iterative development process, two spatial ranking
datasets are used to evaluate the effectiveness of SRVis: House dataset
comprises 1,927 houses available for sale during December 2016 in
Hangzhou, China. The criteria involved in the dataset include textual
descriptions, coordinates, price, floor size, year built, and the number of
living rooms and bedrooms; Store dataset describes 4,968 convenience
stores in the same city. These descriptions comprises relevant criteria
including the flow of potential customers, number of residents and
competitors within two predefined radii, number of target customers
labeled with two tags, and the infiltration ratio of Internet technologies.

As suggested by the domain experts, the benefit criteria (e.g. floor
size and the number of bedrooms) are mapped linearly from [min,max]
to [0,1], and the cost criteria (e.g. unit price) are mapped linearly from
[min,max] to [0,1].

6 EVALUATION

In this section, we thoroughly evaluate the proposed technique with
an empirical study of loss optimization, two case studies, an expert
interview, and a task-based user study.

6.1 Loss Optimization
During the refinement of criteria bar layouts, we adopt a greedy heuris-
tic approach GREEDY to minimize the information loss in the aggre-
gation of alternatives. To evaluate the effectiveness of this approach,
we compare it empirically with several other approaches, including
RANDOM, SORTED, and BRUTE-FORCE. RANDOM simply shuffles alterna-
tives randomly, resulting in the worst-case scenarios as the baseline
of other approaches. SORTED sorts alternatives by the mean of their
weighted criterion values in ascending order, which is capable of gen-
erating the optimal solutions for the alternatives involving only one
criterion. BRUTE-FORCE generates the optimal order of alternatives
that minimizes the loss by searching every possible permutation of
alternatives with respect to samples, as illustrated in Alg. 2. Compared
with the O(pmn2) time complexity of GREEDY, BRUTE-FORCE has an
exponential complexity of O(mn( n

p )
n), which is apparently not suitable

for larger datasets. Although studies [11] show that certain improve-
ments can be made to such searching of permutations, the real-time

Algorithm 2 Minimize the loss optimally with BRUTE-FORCE.
INPUT: the number of alternatives n, the number of criteria m, an array f of size n×m
describing the weighted criteria of alternatives, and the sample size p.
OUTPUT: The optimal sequence of alternatives f ′.

1: minLoss← Infinity, f ′← f
2: procedure GENPERM( f ,p,u,c, f ′′) . Searching a position for fu in a new permutation

f ′′, while ci records the number of alternatives assigned to the i-th samples.
3: if u = n+1 then . Determine if a new permutation has been obtained.
4: loss← ∑

n/p
k=1LOCALLOSS(p, f ,k)

5: if loss < minLoss then . Determine if the current permutation is better.
6: minLoss← loss, f ′← f ′′

7: return
8: for each ci ∈ c do
9: if ci < p then . Find a sample with an empty slot.

10: ci← ci +1, f ′′ci
← fu

11: GENPERM( f ,p,u+1,c, f ′′) . Proceed to find a position for fu+1.
12: procedure BRUTEFORCE( f , p)
13: sampleSizes←{0, ...} of size n/p, f ′′←{nil, ...} of size n
14: GENPERM( f ,p,0,sampleSize, f ′′)
15: return f ′

processing of massive datasets to find optimal solutions is still out of
grasp. As such, we generate small pseudo-datasets for the tests involv-
ing the comparison against the optimal solutions. Each dataset consists
of 12 alternatives, and each alternative comprises 3 equally-weighted
criteria, the values of which were randomly generated from a uniform
real distribution between 0 and 100, inclusive.
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Fig. 5. The information loss vs. the number of samples obtained on
small (a) and large (b) pseudo-datasets with RANDOM, SORTED, GREEDY,
and BRUTE-FORCE approaches.

We run RANDOM, SORTED, GREEDY, and BRUTE-FORCE against the
sample size 2, 3, 4, and 6 for 500 times on randomized datasets and
collect the average and standard deviation of the loss for each ap-
proach. The result is illustrated in Fig. 5(a). From the figure, we see
that the loss decreases linearly w.r.t. the growth of the number of
samples n/p in RANDOM, with the correlation coefficients [41] calcu-
lated to be -0.9990. In contrast, GREEDY generates solutions much
closer to optimal ones obtained with BRUTE-FORCE than those with
SORTED, which are 36.57% worse when n/p = 4, and RANDOM, which
are 63.37% worse when n/p = 4 compared with GREEDY. The loss
in GREEDY and BRUTE-FORCE both decreases logarithmically w.r.t. the
growth of n/p, with the correlation coefficients calculated to be -
0.9995 and -0.9997, respectively. Moreover, the loss of the solu-
tions obtained with GREEDY is more stable than that of the solutions
obtained with SORTED and RANDOM, compared with BRUTE-FORCE:

σGREEDY

σBRUTE−FORCE
= 1.1635, σSORTED

σBRUTE−FORCE
= 2.0676, and σRANDOM

σBRUTE−FORCE
= 2.0528

when n/p = 4.
This empirical evaluation shows that GREEDY performs significantly

better and more stable than SORTED and the baseline RANDOM, and the
trend in the loss of the solutions obtained with GREEDY is identical to
that in the loss of the optimal solutions, from which we speculate the
approximation ratio of GREEDY is bounded by some constant. To verify
the reproducibility of the result, we run RANDOM, SORTED, and GREEDY
against the sample size 2, 4, 8, 16, 32, 64, 128, and 256 for 500 times on
large pseudo-datasets, which comprise 512 alternatives. Once again, the
result on large datasets illustrated in the Fig. 5(b) demonstrates the sig-
nificant improvement of GREEDY compared with other approaches and
the logarithmic relation (correlation coefficient r =−0.9870) between
the number of samples and the loss of approximated sequences.
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Fig. 6. (A) Low-ranked alternatives (50%-100%) were more concentrated in the center of the city than high-ranked ones (better than 50%); (B, C)
After filtering out houses older than 5 years, which were mostly located in downtown area, the distribution in the ranking matrix became much more
smooth; (D) Three clusters RA, RB, and RC with different distributions of alternatives can be identified on the map; (E) The customer flows (red) of
RC did not show observable advantages over those of RA.

6.2 Case Studies
We conducted two case studies with two domain experts EA and EB, re-
spectively, to evaluate the usability and effectiveness of SRVis. EA was
specialized in house trading and interested in using SRVis to explore
the houses available for sale and seek the opportunity to provide better
house recommendations to his clients based on their requirements. EB
had decades of experience in geospatial analysis and location-based
marketing, and he would like to evaluate the performance of established
convenience stores in the city with respect to several relevant criteria,
such as population density and target customer coverage. Both of the
experts had familiarized themselves with the proposed design and the
structures of datasets.

6.2.1 Exploring the House Dataset
In this case study, we demonstrated the effectiveness of SRVis in help-
ing experts obtain the spatial distribution of rankings, identify anoma-
lies in the distribution, and find the cause of the anomalies based on
experts’ domain knowledge.

After EA loaded the house dataset into SRVis, he generated rankings
for the alternatives in the dataset by selecting and grouping two equally-
weighted criteria, namely, floor size (in sq. meters) and unit price
(in dollars per sq. meter), which were considered by his clients the
most important factors in finding the ideal house. Subsequently, the
spatial distributions of the generated rankings were presented in the
ranking matrices. EA immediately noticed that most of the low-ranked
alternatives (bottom 50%) were in the center of the city, because in
both of the horizontal (Fig. 6A) and vertical (Fig. 1B) ranking matrices,
cells with dark colors in the lower parts of matrices were significantly
more concentrated than those in the upper parts.

To figure out why the alternatives in the city center tended to re-
ceive lower rankings with floor size and unit price considered, EA
brushed rectangular selections on the ranking matrices and divided
all house alternatives into two sets by creating two snapshots from
the corresponding selections, one comprising high-ranked (top 50%)
alternatives and another one comprising remaining low-ranked (bottom
50%) alternatives. Then, he dragged a snapshot onto another to toggle
the comparison mode of the ranking view (Fig. 1), thereby obtaining
the difference in rankings (Fig. 1B) and the cause of rankings (Fig. 1E)
between two sets of alternatives. In the criteria charts, EA modified
the stacking order of criteria such that he could observe the individual
distributions of floor size and unit price. He discovered that compared
with low-ranked alternatives, most of the high-ranked alternatives were
distributed around the city (Fig. 1C), and the floor sizes of high-ranked
alternatives located in the suburb were larger than those of low-ranked
ones located in downtown in the criteria charts (Fig. 1D). Therefore, EA
suggested that these low-ranked alternatives might be old houses with
small floor sizes, the geographical advantages of which also explained
the reason why the unit price of these houses was slightly higher (bars
representing the unit price were shorter because they were reversed to
compute scores) than other newly-built houses in the same populated
downtown area.

To confirm his hypothesis, EA left the comparison mode and adjusted
the range filter of time built criterion such that only houses built in the
recent five years were shown on the map. In the ranking view, he
observed that most of the houses ruled out by the range filter, shown as
gray circles on the map (Fig. 6C), were located in downtown, and the
density distribution of alternatives illustrated in the matrices became
much more smooth as he expected (Fig. 6B).

The above findings helped EA efficiently identify these old houses
as cost-inefficient alternatives, which would not be recommended to
those clients who were sensitive to the unit price. In addition, EA noted
that these findings might also contribute to the iteration of the ranking
model, where the surrounding environments of alternatives, such as the
number of restaurants and shopping malls, would be included, such
that the old downtown houses would gain higher rankings if his clients
preferred the convenient accessibility to nearby facilities.

6.2.2 Exploring the Store Dataset
In this case study, we demonstrated the effectiveness of SRVis in inter-
actively locating a small solution set of alternatives tailored for analysts’
requirements via the combination of intuitive spatial distributions of
criteria and flexible spatial filtering features.

The corporation EB worked for had been running an online logistic
plaform for years, on which convenience store owners could register
their stores and order supplies. To collaborate with some stores in
upgrading their services and expanding corporation’s business in local
areas, EB would like to evaluate the performance of these stores and
identify prominent ones from them. First, EB generated rankings with
equal weights for all relevant criteria and focused on analyzing the
promising alternatives in a populated district, which was located near a
tourist attraction and comprised several major residential areas. With
the spatial filtering tool, EB drew a polygon selection on the map to
pick up all alternatives in this district (Fig. 6D). In addition, he also
brushed and selected the first row of the horizontal ranking matrix to
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Fig. 7. (A) The number of nearby residents (Live) and customer flows
(Flow) of CA were higher than those of CB, yet the alternatives in CB
had significant advantages in the infiltration ratio of Internet technologies
(Internet); (B) The projected alternatives formed a linear pattern.



obtain the locations of top-ranked ones among these alternatives.
In the ranking view, EB discovered that the top-ranked alternatives

in the northwestern area RA of the district were more condensed than
those in the northern and eastern areas RB and RC, as depicted on both
of the map and counting bars. EB suggested that this could be because
the densely-distributed office buildings and apartments in RA attracted
many business owners to establish convenience stores. In contrast, in
RB and RC resided a great number of large shopping malls, which
might tend to obstruct the development of small stores. To confirm
his hypothesis, EB evaluated these alternatives with the criteria charts,
where he discovered that although the alternatives in RB and RC were
located in downtown areas, the customer flows of these alternatives
(Fig. 6E) did not exhibit observable advantages over those of the alter-
natives in RA, which were more close to residential areas. This could
indicate that most of the customer flows in flourishing downtown areas
were absorbed by large shopping malls, and the expensive rent in these
areas further impeded the profitability of the alternatives in RB and RC.
Therefore, EB decided to add another filter on the map to preserve the
top-ranked alternatives in RA only.

In the inspector view, the multidimensional scaling projection of
the alternatives caught EB’s attention. The top-ranked alternatives in
RA, which were projected into 2D points based on their similarities of
criteria, formed a linear pattern in the view (Fig. 7B). EB wondered
the reason behind such formulation, so he drew polygon selections in
the projected view to create two clusters of alternatives CA and CB,
one comprising the points on the left of the linear pattern and another
comprising the points on the right, respectively. Interestingly, EB
observed that two clusters exihibited different characteristics (Fig. 7A):
most of the alternatives in CA were located near residential areas,
thereby having more customer flows and target customers nearby;
alternatives in CB, which were distributed more sparsely, showed clear
advantages on the infiltration ratio of Internet technologies (green) over
the alternatives in CA, indicating that store owners might be more open-
minded to the collaborations yet to be proposed. Hence, based on the
company strategy, EB decided to reach out for the stores in CB which
he believed had better potential in profitability.

6.3 Expert Interview
We conducted interviews after the case studies to collect feedback on
SRVis from the domain experts. Both EA and EB responded with a
positive attitude towards the proposed technique, and they also spoke
highly of the integrated design of ranking matrices. EA told us, “This
novel matrix-based integration enables a third dimension for maps,
where the efficient exploration of ranked houses is made interactive.”
EB confirmed the usability of our design: “I have never seen a geospa-
tial analysis tool like this before, but it is quite intuitive and easy to
learn.” In addition, EB liked the design of criteria charts, from which
he could “obtain the spatial distribution of one or several criteria from
a higher level”, but he also pointed out that it “becomes less useful if
only a few alternatives remain on the map.”

EA and EB offered some valuable advices as well. EB mentioned
that in the comparison mode, diverging criteria bars could be confusing
and difficult to be compared directly, because the values in a criteria
bar were not ordered and aligned on both sides. EA agreed with EB’s
opinions and suggested that a dashed line could be added as a visual
hint when users hover over the criteria charts to help users compare
values between bars. Furthermore, he proposed a few modifications for
better usability, including searching alternatives by their descriptions
and visualizing criterion weights on snapshots. We have improved our
system accordingly.

7 DISCUSSION

In this section, we thoroughly discuss the advantages, limitations, and
future work of the proposed technique SRVis.
Advantages. With the popularity of spatial analysis, SRVis is proposed
to satisfy the huge demand of making informed spatial decisions based
on the rankings of alternatives in numerous applications [22, 30, 56].
In such decision-making processes, the importance of presenting rele-
vant spatial contexts has been recognized by the prior studies [22] in
facilitating the effectiveness of decisions. Three challenges, including
presentation, scalability, and analysis, are identified in formulating
the tight integration of spatial contexts and rankings, as stated in the

introduction. We show the advantages of our technique with respect to
these challenges as follows: a) Presentation: The connections between
the rankings, the cause of rankings and the alternatives on the map
are established explicitly via the proposed matrix-based visualization
without interfering spatial contexts. With the visualization serving as
an overview, users can easily identify the spatial patterns of rankings
and gain insights from interactive exploration, as demonstrated with the
case studies shown above. b) Scalability: Compared with the existing
approaches, SRVis can handle large-scale spatial ranking datasets much
more smoothly due to the aggregation of rankings and the cause of
rankings. By adopting flexible filtering features and multiple coordi-
nated views, we compensate the information loss introduced by the
aggregation of rankings and help users locate and analyze interesting
regions and alternatives. Specifically, the scalability and legibility of
the accurate aggregation of criteria distributions is maintained with a
novel two-phase optimization framework. c) Analysis: SRVis enables
users to filter and obtain the spatial distribution of rankings and the
cause of rankings intuitively. In addition, users can compare the rank-
ings between different regions and with different criterion weights. To
the best of our knowledge, no prior technique has implemented such
scalable and flexible analytical features for spatial rankings.
Limitations. Nonetheless, we also observe two limitations in the
proposed technique. The first limitation exists in the greedy heuristic
approach GREEDYwe adopted to optimize the layout of criteria bars. De-
spite the good approximation achieved by this approach, the O(pmn2)
time complexity of GREEDY remains too high to handle thousands of
alternatives instantly. We argue that normally a map slice only covers a
reasonable portion of alternatives, but there could be a faster method,
which may also find a potentially better approximation with a formal
theoretical bound. However, we believe it is beyond the scope of this
study, which mainly focuses on the context integration of spatial rank-
ings. The second limitation is that SRVis only considers linear ranking
models, where rankings are obtained from the sum of weighted criteria.
In contrast, non-linear ranking models, such as learning to rank [35],
are also popular choices of ranking models. Nevertheless, we adopt
linear ranking models for SRVis due to their wide applicability and
intuitive interpretability, leaving the visualization of non-linear models
for the future work. It is also worth noting that the multidimensional
scaling projection in the inspector view might be unreliable in some
cases. To amend this issue, the projection can be further improved by
the designs and interactions proposed in the prior studies [14, 45].
Future work. We will continue working on SRVis to improve the
performance of optimization algorithms and include the support for
non-linear ranking models. In addition, visualizing streaming spatial
rankings by integrating temporal rankings with spatial contexts will be
an interesting direction to further enhance SRVis in the future.

8 CONCLUSION

This study proposes SRVis, a context-integrated technique for visualiz-
ing spatial rankings. In response to three identified challenges, namely,
the presentation of spatial rankings and contexts, the scalability of
rankings’ visual representations, and the analysis of context-integrated
spatial rankings, we collaborate closely with domain experts to charac-
terize the generic requirements for the visualization of spatial rankings
and design a novel matrix-based scalable visual representation for
exploring and analyzing massive ranking datasets. In particular, we
develop a two-phase optimization framework to integrate the cause of
rankings with spatial contexts by considering both of the scalability
and legibility of the proposed encodings. As a whole, SRVis enables
the effective presentation and evaluation of large-scale spatial rankings
with the tight and scalable integration of spatial contexts. The demo of
our system is available at http://zjuvis.org/srvis/.
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