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Fig. 1. The system interface of AirVis: (A) the control panel enables the interactive mining, filtering, and selection of the propagation

patterns; (B) the motif view presents the extracted significant motifs with uncertainty-aware visualizations; (C) the pattern view depicts

the patterns with compact pattern glyphs and pattern graphs; (D) the instance view helps users inspect the propagation instances.

Abstract— Air pollution has become a serious public health problem for many cities around the world. To find the causes of air

pollution, the propagation processes of air pollutants must be studied at a large spatial scale. However, the complex and dynamic wind

fields lead to highly uncertain pollutant transportation. The state-of-the-art data mining approaches cannot fully support the extensive

analysis of such uncertain spatiotemporal propagation processes across multiple districts without the integration of domain knowledge.

The limitation of these automated approaches motivates us to design and develop AirVis, a novel visual analytics system that assists

domain experts in efficiently capturing and interpreting the uncertain propagation patterns of air pollution based on graph visualizations.

Designing such a system poses three challenges: a) the extraction of propagation patterns; b) the scalability of pattern presentations;

and c) the analysis of propagation processes. To address these challenges, we develop a novel pattern mining framework to model

pollutant transportation and extract frequent propagation patterns efficiently from large-scale atmospheric data. Furthermore, we

organize the extracted patterns hierarchically based on the minimum description length (MDL) principle and empower expert users to

explore and analyze these patterns effectively on the basis of pattern topologies. We demonstrated the effectiveness of our approach

through two case studies conducted with a real-world dataset and positive feedback from domain experts.

Index Terms—Air pollution propagation, pattern mining, graph visualization

1 INTRODUCTION

Air pollution has become a global concern due to its severe impacts
on many aspects of modern society, such as public health [28] and
sustainable development [72]. One of the foremost prerequisites in
alleviating air pollution is to understand how pollutants propagate at
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a large spatial scale, thereby enabling experts to identify the origins
and development patterns of the pollution [31, 73]. However, capturing
such propagation processes remains highly challenging because of the
uncertain pollutant transportation resulting from dynamic wind fields.

With the advancement in data sensing and management technolo-
gies [75], data-driven solutions for monitoring, analyzing, and predict-
ing air pollution, such as quality forecasting [70, 78] and local sources
discovery [32], are now possible with the large-scale atmospheric data
collected by widely distributed weather stations. To analyze the prop-
agation of air pollution, state-of-the-art approach HYSPLIT [52] was
put forward in the environmental science literature. This approach was
proposed to automatically infer how pollutants are dispersed in the
atmosphere and affect an area. Although the potential pollution sources
are identified for the given area, HYSPLIT considers neither a) the
inherent uncertainties in the dynamic propagation patterns nor b) the
complex district-level interactions among multiple cities. Moreover, the
lack of an interactive tool that presents the propagation processes from
the overview to details at a large spatial scale actively prohibits expert



users from comprehending the patterns detected in these processes with
their domain knowledge due to the sheer volume of potential patterns.

The aforementioned limitations in the automated approach motivate
us to adopt a user-centric analytics approach and develop an interactive
visualization system to facilitate the understanding of massive uncertain
propagation patterns and identification of major pollution sources and
pathways. However, developing such a system poses three challenges.

Extraction of propagation patterns. Understanding how pollu-
tants propagate across multiple districts is the key to finding the cause
of air pollution. However, the propagation processes of these pollutants
can vary considerably in terms of both space and time. The pollutants
in an area can be transported from different sets of polluted upstream ar-
eas at different times because wind fields are fluctuating every moment.
The transportation speeds also change constantly with the wind speeds
at different locations. Hence, an efficient model is required to extract
frequent propagation patterns from multistep transportation events and
capture the uncertainties of the patterns accurately.

Scalability of pattern presentations. To aid the analysis of the
propagation patterns with the visual analytics approach, an intuitive
uncertainty-driven visual representation based on directed graphs must
be established for these patterns to better illustrate the propagation of
air pollution. The problem is that numerous patterns can be extracted
from the massive atmospheric data collected at large spatial and tempo-
ral scales, demanding considerable effort from users in searching for
common and meaningful patterns with traditional graph visualization
techniques. Organizing these patterns in a scalable and clutter-free way,
which then enables users to identify latent patterns easily with such
representations, remains an important yet challenging task.

Analysis of the propagation processes. The propagation processes
are massive, spatiotemporal, and uncertain. To assist users in external-
izing the pattern identification and analysis procedures, the proposed in-
teractive system must support the effective drill-down exploration [51]
in the pattern-instance hierarchy, associating the abstract patterns with
physical instances (i.e., pollution events). Moreover, such a system
should also incorporate the topology analysis of the propagation pro-
cesses. For example, star-like propagation structures may indicate
that the areas at the center are the major pollution sources. Hence, a
novel visualization approach is demanded to facilitate the sophisticated
analyses of these processes and reveal in-depth insights.

To address these challenges, we first derive a novel pattern mining
framework based on frequent subgraph mining (FSM) method [25]
by combining air quality data with meteorological data to model the
transportation of air pollutants and detect latent propagation patterns at
large spatial and temporal scales. FSM is particularly effective in ex-
tracting frequent subgraphs that represent typical propagation patterns.
On the basis of this framework, we further propose AirVis, a visual
analytics system that enables scalable and intuitive analyses of massive
propagation patterns. In particular, we extract significant motifs (i.e.,
contextless frequent topological structures) from these patterns and
aggregate the patterns based on topology similarities with the minimum
description length (MDL) principle [46] which compresses data by
creating summary representations for similar data items. Moreover, the
patterns are organized hierarchically with multiple coordinated views
and presented with uncertainty visualization techniques to facilitate
the effective exploration and analyses of the pollution propagation
processes. To the best of our knowledge, AirVis is the first attempt
to establish an interactive topology-driven analysis of uncertain air
pollution propagation. Our contributions are summarized as follows.
⇧ We characterized the problem of analyzing air pollution propagation

and compiled a set of analytical requirements based on the iterative
discussions with domain experts.

⇧ We developed a novel FSM-based pattern mining framework that
efficiently models the transportation of air pollutants and extracts
latent propagation patterns from large-scale atmospheric data.

⇧ We proposed AirVis, a visual analytics system that enables experts
to identify and analyze the patterns in the pollution propagation hier-
archically based on the topology with uncertain graph visualizations.

2 RELATED WORK

This section presents prior studies categorized by three relevant topics,
namely, model- and data-driven analysis of air pollution, spatiotemporal

visualization, and subgraph mining and visualization.

2.1 Model- and Data-Driven Analysis of Air Pollution

Model-driven. Air pollution has been extensively studied in the atmo-
spheric environment literature to analyze and mitigate the pollution [14].
CMAQ [10] is one of the most comprehensive atmospheric dispersion
models for analyzing regional air pollution. With the given air pollutant
emission and meteorological data, CMAQ computes the concentration
of air pollutants based on advection, diffusion, and chemical reactions.
For the propagation of air pollution, HYSPLIT [52] is widely used to
identify regional pollution sources [29] and propagation pathways [37].
Based on the meteorological data, HYSPLIT attempts to trace back
the trajectories of many air parcels starting from a given area (i.e.,
receptor) for each timestamp. Each of these trajectories is assigned
with an estimated concentration value. These trajectories can be further
clustered [62] to identify potential patterns or produce a heatmap as a
static picture, but no temporal information is provided.

Data-driven. Recent developments in smart city technologies [75]
have provided unprecedented opportunities for the data-driven analysis
of air pollution with large-scale heterogeneous urban data. Various
types of data, including text, image, and traffic data, were used to
obtain [33, 38, 77] or predict [16, 70, 78] the air quality. In order to
identify pollution sources and propagation patterns, Granger causality
[19] has been recently exploited to infer the relationships between
different observations [26]. Li et al. [32] constructed massive causality
graphs and identified the sources and propagation patterns from them.
pg-Causality [80] combined pattern mining techniques and Bayesian
learning to capture the causal pathways between neighboring cities.

Although the existing approaches have been proven useful for air
pollution analysis, they have limitations. Specifically, the model-driven
methods cannot capture the complex district-level interactions (e.g.,
the pollutants from district A affect both districts B and C), while the
data-driven methods fail to consider the continuous propagation across
multiple districts (e.g., the pollutants from district A are transported
to district D via districts B and C sequentially). The uncertainties of
propagation processes are neglected in both types of methods. More-
over, few studies are combined with interactive visualization, leading to
obstacles in understanding the propagation. To address the limitations,
we propose a novel pattern mining method and design an interactive
visualization system to facilitate analyses of air pollution propagation.

2.2 Spatiotemporal Visualization

Spatiotemporal data visualization has been applied in various domains,
such as location selection [63, 64], urban planning [44, 53], and air
pollution [45,76], yet no visualization tool is available to analyze pollu-
tion propagation. In essence, air pollution propagation can be regarded
as a type of movement data. Spatiotemporal visualization for move-
ment data can generally be classified into three categories [1], namely,
direct depiction, summarization, and pattern extraction. Specifically,
movement data can be directly depicted using visual elements, such as
points [17] for OD pairs, polylines [2], tubes [34], stacked bands [56],
and space-time cubes [3] for trajectories. Movement data can also be
summarized as density maps [35, 47], graphs [59], flow maps [8, 22],
OD matrices [21,69], and OD maps [21]. In addition, pattern extraction
can be applied to obtain significant latent patterns from the movement
data [12, 55, 65, 66, 79, 81]. However, the existing methods cannot be
used to visualize the propagation of air pollution because of its sheer
volume and uncertain nature, such as presenting the aggregated uncer-
tainties of the pollutants propagated across districts A, B, and C. To
this end, we apply pattern extraction and uncertain graph visualization
techniques together with overview-to-detail mechanisms, empowering
users to analyze the propagation processes of air pollution interactively.

2.3 Subgraph Mining and Visualization

Frequent subgraph mining (FSM), a classic research topic in data
mining [25], has a wide range of applications in various domains
(e.g., biology [74], communication [6], and chemistry [15]). Based
on the input dataset, existing FSM methods can be categorized into
single graph-based and graph transaction-based methods. The single
graph-based FSM extracts the patterns that frequently occur within a
single but very large graph [58], while the graph transaction-based
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focuses on those that frequently occur among numerous different graphs
named transactions [68]. Our problem is the latter one where the
transactions correspond to the massive propagation processes. However,
the existing methods like [24] cannot be directly applied to meet our
domain-specific problem of extracting significant propagation patterns
of air pollution. Thus, we modify the formulation to take into account
two aspects of the data, spatiotemporal context and air pollution.

A subgraph is essentially a type of graph. Graph visualization is a
broad research field [23, 60]. We focus on the most related parts of
visualizing a large number of graphs. Some studies focus on either
the structure- [30, 71] or metric-oriented [18, 27] analyses of a large
number of graphs, but they cannot be applied to propagation patterns
wherein both uncertainties and structure are meaningful. Techniques
of dynamic graph visualization [4] aim to organize numerous chrono-
logically evolving graphs (e.g., in a radial [20] or list layout [9, 57])
for efficient time-oriented analysis. These techniques cannot deal with
propagation patterns that are not chronologically ordered. Therefore,
we propose an MDL-based hierarchical organization of massive pat-
terns exploiting their topology similarities, wherein the uncertainties of
the patterns are also visually encoded.

3 OVERVIEW

This section introduces the background of our study, describes the
relevant concepts and datasets, and summarizes the requirements for
the analysis of air pollution propagation.

3.1 Background and Concepts

The rapidly progressing problem of air pollution has become a major
issue for many large cities. Among all factors involved in the devel-
opment of air pollution, the regional transportation of pollutants is
generally considered the foremost one, as demonstrated by case studies
where environmental scientists analyzed the air pollution problem in
Beijing, China [31,73]. To address this problem, it is important to trace
back to the source areas where the pollutants are generated along the
propagation pathways and enforce specific policies to mitigate the pol-
lution, such as limiting road traffic and suspending chemical factories.
To this end, this paper presents the following concepts to characterize
the pattern-based analysis of air pollution propagation and help urban
and environmental science experts better understand the transmission
of pollutants among multiple cities at a large spatial scale.

• Transportation of air pollutants (Fig. 2A). Air pollutants, such as
SO2, PM2.5, and PM10, tend to be transported from one district
to another via winds. Each process is called an instance of air
pollutant transportation or transportation instance for short. A
transportation instance is described by a tuple with five elements,
including the origin and destination locations, the start and end
time, and the amount of transported pollutants.

• Propagation of air pollution (Fig. 2B). Air pollutants can be trans-
ported consecutively across multiple districts. These continuous
transportation instances constitute an instance of air pollution
propagation or propagation instance for short. Numerous propa-
gation instances can be obtained from the atmospheric data owing
to the sheer volume of transportation instances.

• Propagation patterns of air pollution (Fig. 2C). Propagation pat-
terns are the frequently occurring propagation instances within
a spatiotemporal range. For example, in Fig. 2C, a propagation
pattern (blue shaded) comprises the most frequent pathways ex-
tracted from four different propagation instances distinguished by
their colors. Compared with the individual propagation instance
that may be a random and unrepresentative event, these patterns
strongly indicate the latent pathways of pollution propagation.

3.2 Data Description

Public meteorological and air quality datasets [77, 78] are used in this
study. Each dataset includes a station table and a data table. In the
station table, each row represents a meteorological or air quality station
identified by its name and district ID (for meteorological stations)
or GPS coordinates (for air quality stations). In the data table, each
row represents a sample collected in a meteorological or air quality
station at a specific timestamp. A meteorological sample comprises
weather information, including wind speed and direction, whereas an

air quality sample records the concentrations of different air pollutants
(e.g., PM2.5, SO2). These samples are collected on an hourly basis.

Without loss of generality, this study focuses mainly on analyzing
the propagation of PM2.5, a major type of air pollutant that can be trans-
ported over long distances [61] and seriously affects public health [67].
After data cleaning and preprocessing, a meteorological sample and an
air quality sample for every hour (5,448 hours) were obtained between
Sept. 16, 2014 and Apr. 30, 2015 from 138 meteorological stations and
38 air quality stations. We refer to these stations as districts because
they represent the regional atmospheric conditions.

3.3 Requirement Analysis

To identify the user requirements for analyzing air pollution propaga-
tion, we closely worked with three domain experts, EA, EB, and EC,
from the fields of urban computing and atmospheric science in the past
year. EA and EB have decades of experience in utilizing data-driven
automated approaches to study various urban problems, including air
pollution, while EC is a recognized environmental scientist specializing
in the analysis of air pollution and its propagation. This cooperation
attempts to integrate their expertise in evaluating significant propaga-
tion patterns and finding major sources of air pollution using the visual
analytics approach. To achieve this goal, we closely followed the nine-
stage design study methodology framework [49]. In particular, we first
conducted comprehensive literature review (learn) regarding the anal-
ysis of pollution propagation and the visualization of spatiotemporal
graph data, and then attempted to identify user requirements (discover)
by holding bi-weekly discussions with the experts for three months.
During the development of our system, we iteratively prototyped and
implemented several design alternatives (design & implement) and
evaluated the proposed designs with the experts (deploy) to verify
the effectiveness of our approach. The derived user requirements are
summarized as follows.
R1: Explore a topology-based overview of patterns. To interpret
the massive propagation patterns extracted from atmospheric data, the
experts must first grasp an overview of these patterns through their
topologies, which are the key factors in understanding their roles. For
example, a star-like topology indicates that the district at the center of
the topology could be a major source of air pollution, while a linked
topology represents the long-range transportation of pollutants. Such
topology analysis allows the experts to intuitively classify patterns and
find promising ones on the basis of their spatial structures.
R2: Obtain the spatiotemporal summaries of patterns. To identify
interesting patterns from those with identical topologies, the experts
should be able to obtain a clear summary of each propagation pattern
in terms of their spatial (On which path is the pollution propagated?)
and temporal (When did the associated pollution instances occur?)
dimensions. The summary enables experts to integrate domain knowl-
edge to initially evaluate a propagation pattern, like determining how a
city suffered from the pollution propagated from an industrial city and
whether it was an abnormity against the meteorological common sense.
R3: Unfold the uncertain propagation process of a pattern. The
experts aim to establish how the pollutants are transported between
districts in a specific pattern. In addition to the general overview of
propagation pathways, they are particularly interested in analyzing the
probabilistic cause-effect relationship between source (A) and desti-
nation (B) districts in the pattern. How much is the expected amount
of pollutant transportation from A to B? Which district is the largest
contributor to the pollution in B? Which district has received the largest
impact of the pollution in A?
R4: Find the similarities or differences between patterns. To iden-
tify similar or abnormal propagation processes, experts need to compare
between these patterns based on the topologies and properties of the
patterns. For example, patterns may share the same pollution source
but propagate via different pathways. To study the effect of a pollution
source, experts need to conduct the comparative analysis based on the
cause-effect relationships, including propagation paths and strength, to
determine the major pathways. The discovery of similar patterns also
allows the experts to analyze them in batch to speed up the workflow.
R5: Examine the propagation instances in a pattern. Each pattern is
associated with numerous propagation instances. To obtain reliable and
convincing results, the experts need to check these instances for detailed
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gation pattern identified from four propagation instances, each encoded

with a color; (D) a propagation graph (i.e., a propagation instance) con-

structed from massive transportation graphs; (E) a frequent subgraph

(i.e., a propagation pattern) extracted from massive graph transactions.

information, e.g., how frequently did the relevant pollution events occur
and did the pollution become severe over time? Furthermore, displaying
the raw samples with numeric readings is desirable because the experts
are familiar with such a presentation.

3.4 System Architecture

Based on the aforementioned requirements, we develop AirVis which
comprise two parts, namely, the backend and the frontend. The backend
of the system, implemented in Node.js, integrates an FSM-based pattern
mining model to extract frequent propagation patterns efficiently based
on the parameters specified by the users. The frontend, written in
Vue.js and TypeScript, runs in modern web browsers and allows users
to interactively explore and analyze the complex propagation patterns,
which are revealed with the hierarchical visualizations based on the
topologies, propagation processes, and instances of the patterns.

4 PATTERN MINING

This section describes a novel mining framework for the efficient ex-
traction of air pollution propagation patterns. First, we model the
transportation of air pollutants quantitatively. Then, we construct prop-
agation graphs based on the modelled transportation instances. Finally,
we leverage the FSM method to extract the propagation patterns.

4.1 Modelling Pollutant Transportation

The transportation of air pollutants between two districts is highly
uncertain due to the varying wind fields. To model such a process from
district i to j, for example, we need to determine the probability of
the air pollutants transported from i to j (Fig. 3A). By leveraging the
air parcel concept from the environmental science literature [50], we
attempt to simulate the movement of air pollutants with air parcels
based on a quantitative sampling method (Fig. 3C). Specifically, s air
parcels, representing the air pollutants, are released near the district i at
the timestamp t in a simulation. The locations of these air parcels are
updated iteratively based on the meteorological conditions, including
the wind speed and direction (Fig. 3B), until the distance between the
air parcel and the district j falls under de = 20km or the time limit is
exceeded. Inspired by HYSPLIT [52], we update the location of an air
parcel with the following equations at the timestamp t:

L(Dt + t) = L(t)+~vt ⇥Dt

~vt =
Âm2M(dn�dm)⇥ ~vm,t

Âm2M(dn�dm)
,

where ~vt is the velocity of an air parcel at the location L(t) at the
timestamp t, and M is a set of neighboring meteorological stations,
where the distance between each station and the air parcel is measured
to be dm, within the given distance threshold dn = 30km. The nearer the
station is, the more its observed wind vector ~vm,t contributes. Thereafter,
we denote the number of the air parcels that reached the district j as
sr and the travel time of the k-th air parcels as ttk, k  sr. Hence, we
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estimate the transportation probability pi jt from district i to j at the
timestamp t with the empirical observations:

pi jt =
sr
s
.

The average transportation time tti jt is calculated to be (Âsr
k=1 ttk)/sr.

Fig. 3C and 3D demonstrate an example of inferring transportation
probabilities from air parcel sampling.

Subsequently, we represent each transportation instance with a trans-
portation graph (Fig. 2D). Each transportation graph has two nodes ni
and n j that represent two respective districts i and j and one directed
edge ei j indicating the transportation process. In addition to the inher-
ent attributes, such as the name and geo-location, each node n has two
extra attributes, namely, the timestamp n.t and the pollution concentra-
tion n.c observed at the timestamp n.t. Furthermore, we compute the
following attributes and associate them with the edge ei j: a) the trans-
portation time of the transportation instance is denoted with ei j.tt; b)
the estimated transportation probability is denoted with ei j.p, which is
also the contribution factor of this transportation instance that describes
the ratio of the pollutants transported from the source to the destination
district; c) the expected amount of the transported pollutants is derived
with ei j.tc = ei j.p⇥ni.c; and d) the impact factor ei j.a = ei j.tc/n j.c
indicates the ratio of the pollutants in the destination that are received
from the source district. Based on experts’ suggestions, we removed
the graphs with ei j.tc < 30, assuming that no pollutant is transported.

4.2 Constructing Propagation Graphs

The transportation instances only describe the pollutant transmission
from one district to another. To characterize the pollutants propagated
among multiple districts, we derive the propagation instances, repre-
sented by propagation graphs (Fig. 2D), by searching and merging the
extracted transportation graphs.

To better illustrate the construction of propagation graphs, we first
define the concept of spatiotemporal continuity (Fig. 4): two trans-
portation graphs are spatiotemporally continuous iff they share one and
only one node, where the locations and timestamps of the shared nodes
are equal, respectively. Based on this concept, we follow a depth-first
search procedure outlined as follows: starting from a random trans-
portation graph, we recursively add the transportation graphs that are
spatiotemporally continuous with the added ones to the propagation
graph. To simulate the decomposition of air pollutants, we limit the
maximum time span of the propagation graph to 200 hours, as recom-
mended by the experts. By repeating this procedure, we are able to
generate a massive number of propagation graphs pG = (V,E) until all
the transportation graphs have been visited. The attributes associated
with the nodes and edges in the propagation graphs are identical to
those in the transportation graphs. Such method allows us to obtain the
continuous long-distance propagation instances naturally as paths in the
graphs, which are almost impossible to detect with the prior methods.

4.3 Extracting Propagation Patterns

To extract the meaningful patterns from the propagation instances, we
seek to find the persistent and significant parts in the generated propaga-
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tion graphs with the frequent subgraph mining (FSM) techniques. We
convert the extraction of the propagation patterns to an FSM problem
with the following concepts (Fig. 2E):

• Transaction: Transactions are the input of the FSM problem. Each
transaction is defined as a graph that comprises a set of labeled
nodes and edges. In our scenario, we refer to the propagation
graphs as the transactions.

• Support and frequent subgraph: A subgraph g (i.e., a propagation
pattern) may match a number of transactions based on the graph
isomorphism. The support of g is the number of the matching
transactions divided by the number of total transactions. g is
frequent iff its support is larger than a given threshold lc.

We employ a well-established Apriori-based method [24] to extract
the frequent subgraphs. In addition, we allow users to interactively
control the pattern mining process by setting a transported pollutant
threshold lp to exclude from support computation the propagation
graphs where the pollutants transported on the matched edges e.c are
below the threshold. Furthermore, the support is calculated with the
time span covered by the matched transactions divided by the total time
span to emphasize the importance of the pollution durations.

Finally, the massive propagation patterns (i.e., frequent subgraphs)
can be efficiently extracted. Each pattern P = (V,E) comprises a node
set V comprising the involved districts and an edge set E comprising
the propagation pathways. Each node vi 2 V maintains a list of the
pollution concentrations vi.C collected from the corresponding nodes
in the matched propagation graphs. Similarly, each pathway wi j 2 E
from district i to j is associated with wi j.T T , wi j.P, wi j.TC, wi j.A,
lists of transportation times, transportation probabilities, transported
pollutant concentrations, impact factors, respectively. Please refer to
the appendices for all used notations and details of pattern extraction.

5 VISUAL DESIGN

In this section, we present the design goals compiled from the afore-
mentioned user requirements and describe the design of AirVis, a visual
analytics system for analyzing the propagation of air pollution.

5.1 Design Goals

To satisfy the user requirements and support the analytical tasks, we
further compile a set of design goals summarized as follows:
G1: Hierarchical presentation of propagation patterns. To address
scalability issues and facilitate the effective exploration of massive pat-
terns (R1, R2, R3, and R5), we follow the visual information-seeking
mantra [51] and organize these patterns hierarchically with multiple co-
ordinated views. Users should be able to identify interesting topologies
first (R1), browse through the patterns with an identical topology (R2),
proceed to the analysis of a particular pattern (R3), and finally dive into
the details of the associated propagation instances (R5). Moreover, the
design should also support the intuitive filtering of patterns.
G2: Uncertainty-aware visualization of pattern topologies. Pat-
terns with similar propagation topologies should be aggregated to pro-
vide a comprehensive overview (R1). In particular, each edge in the
aggregated topologies comprises a set of propagation probabilities asso-
ciated with the corresponding edges of the pattern. These probabilities
should be reflected on the topology visualizations to assist users in
determining the stability of propagation structures.

G3: Spatiotemporal visual summaries of patterns. To help users
intuitively learn the basic characteristics of the patterns, the system
should compactly present the visual summaries of these patterns in
terms of their spatial contexts and temporal distribution (R2). Glyph is a
ideal candidate since many visualization studies [5] have demonstrated
its effectiveness in multifaceted analysis, where complex data can be
encoded with different visual channels in a space-efficient way.
G4: Intuitive illustrations of propagation processes. The propaga-
tion processes of a pattern (R2) are based on directed graphs, where
the nodes represent the involved districts and the edges indicate the
transportation of pollutants. Thus, these processes can be intuitively
visualized with a node-link diagram on the map. Moreover, the proba-
bilistic cause-effect relationship between the districts can be encoded
on the node-link diagram to help users interpret the pattern of interest.
G5: Comparative visual analysis of propagation patterns. The pro-
posed design should allow users to compare among multiple interesting
patterns according to their topologies and attributes (e.g., expected
amount of propagated pollution) and find their similarities and differ-
ences (R4). This comparison can likewise be facilitated further by
automated approaches, such as dimensionality reduction techniques, to
enable the effective discovery of pattern clusters and outliers.
G6: Detailed inspection of relational propagation instances. To
support the analysis of the propagation instances associated with a
pattern (R5), the proposed design should a) enable users to select a
time frame of interest on the basis of the temporal distribution of the
instances and b) present the propagation relationships among involved
districts in a scalable fashion. Moreover, the raw readings of air quality
data should be included in the proposed design.

Based on these design goals, we develop AirVis to assist the expert
users in visually analyzing and sensemaking the uncertain propagation
of air pollution at a large spatial scale. AirVis follows a hierarchical
exploration scheme (G1) to facilitate the effective visual analysis:

Topology Visualization (G2): The topologies of the extracted propa-
gation patterns are aggregated and visualized in the motif view (Fig. 1B)
based on the MDL principle and the idea of motifs [41]. Moreover, the
uncertainties of the topology structures are encoded within the glyphs.

Pattern Visualization (G3, G4, and G5): By expanding a motif,
users can browse through the associated pattern glyphs in the pattern
view (Fig. 1C) and learn the complex propagation processes of the se-
lected patterns via the inspection list (Fig. 1C3), where the juxtaposed
propagation graphs provide the support for intuitive side-by-side com-
parative analysis. In addition, an automatically generated projection
view (Fig. 1A3) is incorporated to help users identify similar patterns.

Instance Visualization (G6): The instances in the selected pattern
are depicted in the instance view (Fig. 1D). By selecting a timeframe
according to the temporal distribution of instances, users can explore
the transportation of pollutants among the involved districts with the
chord diagram and inspect the detailed numeric data in the table.

5.2 Topology Visualization

To facilitate the topology-driven analysis of air pollution propagation
(G2), we aggregate similar patterns based on topology into motifs and
visualize these motifs with uncertainty-aware visual encodings.

5.2.1 MDL-Based Pattern Aggregation

Inspired by the concept of motifs in the field of network analysis [41],
we denote the contextless topological substructures in the propagation
graph of a pattern as motifs. To detect patterns with the similar topolo-
gies, significant motifs (Fig. 5) that are commonly shared among the
patterns can be extracted as the representations of the corresponding
patterns, enabling users to obtain the key topological characteristics of
the underlying patterns intuitively. Therefore, such motif extraction
should satisfy the following two requirements: a) generality: the signif-
icant motifs should be general to represent a large portion of the pattern
topologies; and b) similarity: each significant motif and its correspond-
ing patterns should be identical to avoid undesired aggregation.

We extract these motifs based on the minimum description length
(MDL) principle [46], which has been demonstrated to be particularly
effective in sequence summarization [13] and graph simplification [11].
The MDL principle seeks to find a common summary Si for a group
of data items and denote the remaining part of the j-th item in the
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(i.e., significant motif) and corrections generated by the MDL principle.

group as the correction Ci j. By minimizing the overall description
length L = Âi(|Si|+Â j |Ci j|) for all groups, we can obtain compact
data representations that satisfy the aforementioned requirements.

To adapt the MDL principle to the extraction of the motifs, we first
deduplicate the propagation graphs to remove the graphs with the dupli-
cate topologies and then use the remaining graphs as the input data items
Gi = (Vi,Ei) 2 G to find a set of summaries S = {S1,S2, ...}, where Si
is a motif that represents a series of propagation graphs {Gsi1 ,Gsi2 , ...}
of length ki, i.e., Si ✓ Gsi j . Similarly, the correction Ci j is defined as
Gsi j \Si, as illustrated in Fig. 5B. Based on the generality and similarity
requirements, our goal is to minimize:

L(G,S) = Â
i

Li(G,Si) = Â
i
(|Si|+Â

j
|Ci j|),

where |Si| and |Ci j| denote the number of edges in the respective graphs.
The greedy algorithm proposed by Navlakha et al. [42] can be applied
to calculating S by iteratively merging the pair of the motifs Si and
S j that maximizes the decrease of L(G), until no such pair exists.
In addition, we introduce a constraint Li(G,Si)/ki > Lm(G,Sm)/km
and Li(G,S j)/k j > Lm(G,Sm)/km based on the average of description
lengths, where Sm is the summary after merging and km = ki +k j is the
number of the patterns associated with the motif Sm. This constraint
allows the resulting motifs to bias towards the similarity requirement,
thereby generating more accurate topological representations. Please
refer to the appendix C for more details.

The computation of the summary set S can be further accelerated
with a tree index, where we start from the root corresponding to a graph
with only one vertex and generate each child node by iteratively adding
an edge to the graph associated with the node’s parent until the index
contains all propagation graphs. Subsequently, we remove the nodes
that are not a part of any propagation graph. With such index, the
summary set can be efficiently approximated by selecting the node that
contains the most propagation graphs and merging all of its propagation
graphs greedily in batch for each level of the tree from the bottom up.

5.2.2 Uncertainty-Aware Motif Visualization

The extracted significant motifs are then visualized in the motif view
(Fig. 1B) as the summary representations of pattern topologies. To help
users identify the structures of the motifs intuitively, we present these
motifs with node-link diagrams based on the force-directed layout
algorithm (e.g., Fig. 1B4), where the corrections of the associated
propagation graphs are superimposed on each extracted motif with the
relatively smaller node size and lighter color.

Uncertainty-aware glyphs. Each edge of the significant motifs
comprises a series of propagation probabilities corresponding to each
edge of the associated propagation graphs. Hence, we visualize these
probabilities on each edge of the motifs with an intuitive fusiform
glyph (Fig. 1B3) indicating the mean and variance of the probability
distribution. The mean of the probabilities, encoded with the opacity of
the glyph, reveals how likely the pollutants will be propagated along
the edge, while the variance, encoded with the width of the glyph,
helps users determine the stability of the edge in such propagation
structure. Such glyph design allows users to quickly identify the strong
and persistent propagation structures from a list of motifs. In addition,
the motifs can be sorted by the average mean or variance of their edges.

Design alternatives. An alternative to the aforementioned glyph
design is to encode the probability distribution directly along the edges
with the summarization representations like heatmaps (Fig. 6A). Users
can obtain the fine-grained propagation probability information from
the motifs. However, two limitations are observed in such design: a)

the conflicting directions of the edges introduce the difficulty in the
readability of the glyphs, i.e., the starting points of the axis, and b) users
complained that they had misinterpreted this visual encoding as the spa-
tial distribution of pollutants among the involved districts. Hence, we
have simplified the design of the glyphs and selected two representative
features, the mean and the variance, to help users intuitively grasp the
uncertainty in the topological structures of the significant motifs.

A

overlap

B C D

Fig. 6. The design alternatives to (A) the uncertainty visualiztion in the

motif glyphs, (B) pattern glyphs, and (C) (D) pattern graphs.

5.3 Pattern Visualization

By selecting a significant motif in the motif view, users can analyze the
propagation patterns associated with the selected motif in the pattern
view (Fig. 1C). However, presenting all patterns in the same spatial
context will result in overlapping edges and severe visual clutters, and
such method cannot provide important insights into multi-district prop-
agation processes. Moreover, these patterns are closely related to their
spatiotemporal context and associated with multiple probabilistic at-
tributes including the contribution and impact factors, and thus the
existing graph visualization methods [43, 48, 59] cannot be directly ap-
plied. To help users locate interesting patterns and inspect the detailed
propagation processes, we adopt a visual representation with two levels
of detail for the patterns. The first level of detail (Fig. 1C1) comprises
a list of compact pattern glyphs that outline the spatiotemporal infor-
mation of each pattern, with which users can obtain a brief overview
about the spatial contexts and temporal distributions of the patterns
(i.e., when and where the pattern occurred) (G3). Thereafter, users
can add a pattern to the inspection list (Fig. 1C4), where the detailed
propagation processes of each added pattern will be depicted with a
pattern graph on the map served as the second level of detail (G4).
Additionally, in the projection view, we lay out the patterns according
to their similarities computed based on the word2vec model [39, 40] to
assist users in identifying pattern clusters and outliers efficiently (G5).

5.3.1 Pattern Glyphs

The design of the pattern glyphs is illustrated in Fig. 1C1. The small
dots enclosed in the large circle represent the districts and are laid out
according to their geospatial positions. The districts and pathways
involved in the propagation process are highlighted in orange, while
the irrelevant dots are rendered in gray. The red arrow on the border
points towards the average direction of the propagation pathways. To
facilitate the visibility of the propagation process in such a compact
space, the fisheye effect is applied on mouse hover (Fig. 1C3).

The temporal distribution of the propagation instances is depicted
with a bucketed heatmap around the glyph. Each bucket represents a
week, resulting in total 33 buckets. The top of the heatmap is explicitly
made discontinuous to avoid the confusion that the distribution is cyclic.

Design alternatives. Instead of the dot-based representation, an
alternative is to embed a map directly in the glyph focusing on the
spatial region that contains the propagation process (Fig. 6B). However,
the readability of the map is limited because of the compact space in the
glyphs, and the spatial contexts of the glyphs are difficult to compare
due to the lack of a consistent spatial reference.

5.3.2 Pattern Graph

The pattern graphs are designed to visualize the uncertain propagation
processes of a pattern on the map. Each transportation pathway between
two districts (e.g., the source district A and the destination district B) in
the propagation processes comprises two key features, the contribution
and impact, extracted from all transportation instances. The contribu-
tion of a pathway includes all expected ratios of the pollutants in A
contributing to B. Similarly, the impact comprises the expected ratios
of the pollutants in B received from A.

We illustrate such cause-effect relationships with a tailored node-link
diagram (Fig. 1C5). The districts involved in the propagation process



are represented with the circles filled with yellow on the white back-
ground. Moreover, the size of these circles indicates the concentration
of pollutants. Around the circle, each small pie chart in red or green
is linked with an incoming or outgoing edge and encodes the median
of the impact or contribution ratios with the filled part, respectively. In
particular, the expected ratios are represented with their medians, since
medians are less sensitive to extreme values.

Design alternatives. Besides the satellite layout proposed above,
we developed two alternative layouts, the circumferential and radial lay-
outs, to encode two percentage values at both ends of each edge in the
node-link diagrams. The circumferential layout (Fig. 6C) encodes the
values as donut slices along the circumferential direction of the nodes.
However, such encoding may result in severe occlusions between slices.
The radial layout (Fig. 6D) depicts the values along the radial direction
with bars. Nevertheless, such encoding has the scalability issue because
each glyph requires more screen space. Hence, we chose the satellite
layout to visualize the percentage values compactly and intuitively.

5.3.3 Pattern Similarity Detection

In addition to the juxtaposed comparative analysis in the inspection list,
the projection view (Fig. 1A3) is designed to assist users in understand-
ing the similarities and differences among the patterns and identifying
the interesting pattern clusters and outliers efficiently.

Vector representation. To compute the similarities, we first ob-
tain a semantic vector representation for each pattern based on the
word2vec model. The word2vec model has been demonstrated to be
highly effective in generating a vector for each word in the vocabulary
extracted from a series of sentences while the Euclidean distance be-
tween two vectors indicates the similarity between two corresponding
words. In our scenario (Fig. 7C), we use the patterns as the words
and the transactions (i.e., the propagation instances that support the
patterns) as the sentences, such that we can directly feed the patterns
and transactions into the word2vec model and obtain the vectors that
represent the patterns. In particular, a unique ID is assigned to each
pattern, and the feature vector for each transaction is generated with
a list of pattern IDs the transaction belongs to (Fig. 7C1). We set the
scanning window to the largest number of patterns in a transaction in
order to make the patterns in the same transaction related to each other.

Visualization. Given the vector representations, we perform the
dimensionality reduction with t-SNE [36] to preserve the local similari-
ties among the patterns and obtain the two-dimensional coordinates of
the patterns. These patterns are subsequently plotted as a scatterplot,
where the mean concentration of the estimated transported pollutants in
all districts is encoded with the opacity of the points for each pattern.

Alternatives. We also attempted to perform the t-SNE method di-
rectly with one-hot vectors (Fig. 7A and 7B). These one-hot vectors
are generated either by concatenating the features (e.g., the time oc-
curred, district, and pollution concentrations) or with the transactions
directly. However, the results failed to capture the similarities among
the patterns accurately, mainly because these vectors are too sparse.

5.4 Instance Visualization

By selecting an interesting pattern, experts can inspect its detailed
propagation instances (G6) via the instance view (Fig. 1D).

Pollutant transportation. The transportation instances among the
involved districts within the timeframe selected on the slider are visual-
ized with a chord diagram (Fig. 1D1), which offers the occlusion-free
exploration of the instances in terms of both spatial and temporal di-
mensions. Each district is represented with an arc, along which the
time-varying pollutant concentrations are encoded in a clockwise di-
rection with the height and luminance of the bars. The transportation
instances between pairs of districts are indicated with chords, the widths
of which encode the impacts of the instances.

Raw instance data. An instance table (Fig. 1D2), coordinated
with the chord diagram, is designed to provide the raw data of the
propagation instances with numeric values and the distributions in box-
plots. The raw data of each district pair in the propagation instances is
depicted with a nested table (e.g., the statistics of pollutant transporta-
tion from Xinjishi to Shenzexian are shown in Fig. 1D3). These raw
data include the pollutant concentrations in the districts, propagation
probability, transportation time, and occurred time.
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Fig. 7. Three methods to generate the vector representation of a pat-
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representations of the patterns based on the word2vec model.

5.5 Interactions

The following three interactions are incorporated into the proposed
system to further enhance its usability.

Interactive mining. Our system allows users to interactively tune
the parameters in the mining model, including the time span, lp, and
lc, and obtain the generated patterns in real-time with a control panel
(Fig. 1A1). These parameters default to less strict values, thereby
allowing the model to produce a reasonable number of patterns. Users
can customize these parameters according to their needs.

Pattern filtering. Users can select a district and filter out the patterns
that does not involve the selected district. Moreover, the selected district
will be highlighted in the motif and pattern glyphs. Users can also draw
a polygon selection on the projection view to see the desired patterns.

Hierarchical exploration. Users can unfold the motif and pattern
glyphs to reveal more details on demand. The interesting patterns can
be added to the inspection list, where these patterns can be compared
side by side and further inspected in the instance view.

6 EVALUATION

We demonstrated the effectiveness and usability of AirVis via two case
studies and the interviews with three domain experts (EA, EB, and
EC). Before the case studies, we conducted a training session to walk
the experts through our system, including the visual encodings and
user interactions. Thereafter, the experts explored the propagation pat-
terns with the system and investigated their subjects of interest: a) the
propagation patterns in the North China Plain, and b) the propagation
patterns that involved Beijing. In these case studies, the experts ob-
tained valuable insights that could potentially alleviate the air pollution
problem and guide the pollution control policies in China. We then
interviewed the experts to collect their comments and feedback.

6.1 Regional Analyses

The North China Plain is not only the political center but also the most
polluted area in China. The experts aimed to identify the districts
that acted as the pollution sources in air pollution propagation and
understand how the districts interacted with one another.

The experts opened the system and immediately noticed a heavily
colored pattern cluster at the top left of the projection view (Fig. 1A3),
which represented a group of patterns with high pollutant concentra-
tions. Given that the projection view captures the similarities of the
patterns based on their spatiotemporal contexts, this pattern cluster
indicates that the propagation of air pollution with high pollutant con-
centrations occurs consistently in the same spatiotemporal domain.
Such an observation triggered the experts’ interest. After these patterns
were selected by drawing a polygon, a set of significant motifs were dis-
played in the motif view (Fig. 1B). Most of these motifs comprised four
or even five nodes, indicating that this cluster of propagation patterns
involved many districts and covered a large area.

Chain-like motif exploration. The experts noticed a motif with
a chain-like topology (Fig. 1B1), and each edge of this motif had a
nearly-opaque but wide fusiform glyph indicating both of the high
transportation probability and uncertainty. Curious about this type of
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propagation, the experts clicked on the motif and retrieved a set of the
propagation patterns with such topology in the pattern view (Fig. 1C).

The experts skimmed through these patterns and quickly acquired
a general impression. In particular, all patterns in the pattern view
(Fig. 1C) exhibited an almost linear shape spatially and spread across
the southwestern and northeastern regions. The experts suggested that
the low uncertainty of such topology might result from the constant and
strong winds along these paths. Moreover, the temporal distributions
and the propagation direction arrows also showed that the propagation
patterns from southwest to northeast (e.g., the first two patterns in
Fig. 1C) mainly occurred in autumn and early winter, whereas those
in the reversed direction (e.g., the last three patterns in Fig. 1C) often
occurred in late winter and spring. This phenomenon is consistent with
the meteorological conditions. While browsing the spatial contexts
inside the glyphs, the experts found two patterns (i.e., the first two
patterns in Fig. 1C) that started near Shijiazhuang in winter and autumn
and propagated the air pollutants towards Langfang along two different
but almost parallel paths. The experts were interested in these patterns
because there were many coal-fired power plants around Shijiazhuang.

Experts further unfolded these patterns to study their propagation
processes. In the pattern graphs illustrated in Fig. 1C5 and 1C6, two
districts, Xinjishi and Xinleshi, were identified as the origins of air
pollution. The large sizes of the inner orange circles suggested that
these two districts were seriously polluted. Moreover, the pie charts
in Fig. 1C5 and 1C6 indicated that the pollution propagated along two
different paths was largely contributed by the pollution in these two
districts, which were constantly exposed to the pollution from Shiji-
azhuang. EA and EB hypothesized that the coal-fired power plants
could be a severe air pollution source that had a considerable impact
on remote regions. This hypothesis needs to be confirmed with ad-
vanced chemical reaction analysis. Moreover, EC also indicated that
the pollution in Shijiazhuang might reach northeastern districts, includ-
ing Beijing and Langfang, via these two paths. Therefore, informed
pollution control policies can be made with these patterns, such as
suspending a few power plants in Shijiazhuang based on the forecasted
wind conditions, which has been proven to be particularly effective [54].

Unbalanced motif exploration. EB noticed another stable motif
with an interesting structure (Fig. 1B2) wherein a district was pol-
luted by the pollutants propagated along two different paths, one of
which was relatively long. Such structure indicated that this district
had a higher vulnerability to air pollution. EB selected this motif to
obtain the associated patterns, where he identified an interesting pat-
tern that occurred in two large cities, Tianjin and Tangshan (Fig. 8A1).
In the corresponding pattern graph (Fig. 8A), the propagation path-
ways suggested that the pollution in the Binhaixinqu district was likely
propagated from the downtown of Tianjin and a remote city, Tang-
shan. Fig. 8B shows the deterioration of air quality among the involved
districts is highly correlated in the time ranges enclosed with dashed
circles, which confirmed the aforementioned hypothesis. However, EB
indicated that alleviating the pollution in Binhaixinqu was especially
challenging because such pollution involved multiple sources.

Medium-polluted pattern analysis. Furthermore, EA also wanted
to examine the patterns with medium air pollution that were repre-
sented by the relatively transparent points sparsely distributed in the
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projection view (Fig. 1A4). After selecting these patterns, only one
significant motif that comprised two nodes and one edge was shown
in the motif view (Fig. 1B5). Compared with the previously inspected
patterns of serious air pollution, each of the current patterns involved
fewer districts and covered a smaller area. EA suggested that this was
because the pollution could propagate to remote districts only if the
pollution was severe. Otherwise, the pollutants would be decomposed
during the long-distance propagation processes. These patterns also
had diverse temporal distributions and were sparsely distributed on the
map (Fig. 1C7). This observation is consistent with the scattered points
in the projection view, demonstrating that our projection method is suc-
cessful in capturing the spatiotemporal similarities of the patterns. The
experts told us that these patterns were likely to reflect the interactions
of local pollution, such as traffic emissions, among different cities.

6.2 District-Centered Analyses

The cause of air pollution in Beijing, the capital of China, still remains
controversial [31]. Some researchers concluded that regional transport
of PM2.5 is the main cause of air pollution in Beijing, while others
attribute the air pollution to local production. The experts tried to
answer this question by exploring propagation patterns with AirVis.

In particular, they wanted to investigate the significant propagation
patterns of air pollution in winter, which is the time when the air pol-
lution in Beijing becomes the most serious. Therefore, the experts
set the time span to winter and increased the threshold of support lc
to 0.05. According to these constraints, a new set of more signifi-
cant patterns were extracted. The representative air quality station
of Beijing is located at Dongchengqu, a center district of Beijing.
Hence, the experts filtered out the irrelevant patterns that do not in-
volve Dongchengqu (Fig. 1A2). Given that a motif represents multiple
topologically identical patterns, the roles of the Dongchengqu in the
propagation processes are encoded with the grayness of the correspond-
ing nodes based on the number of topological matches. The experts
then identified a group of patterns in which Dongchengqu acted as both
of the pollution source affecting several downstream districts and the
victim exposed to the air pollutants from upstream districts (Fig. 9A).
After comparing this group of patterns, the experts disclosed three main



types of propagation processes:
1) From Baoding to Bejing (Fig. 9B). There are some patterns

starting from Baoding and ending in the downtown of Beijing. The
experts learned that the external pollution in Beijing is likely from
Baoding, so they carefully inspected this type of patterns in the in-
stance view (Fig. 9E) to check the detailed effects and transportation
times (Fig. 9E1).They found that such patterns would result in severe
air pollution along the propagation pathway, as shown in the tempo-
ral distribution of air quality (enclosed in dashed circles in Fig. 9E).
By accumulating the average of three transportation time boxplots in
Fig. 9E1, the experts inferred that the pollution in Baoding will be
propagated to Beijing in approximately 7 hours. This information is
critical for the local authorities to issue early air quality warnings.

2) From Beijing to Baoding (Fig. 9C). Surprisingly, Beijing also
served as a source that polluted Baoding. In contrast to the propagation
processes described above (Fig. 9B), the pollution in Beijing were
propagated along the exactly same path but in the opposite direction.
Moreover, the experts noted that the impact factors in these processes
(Fig. 9C1) were smaller than those shown in Fig. 9B1, indicating that
the pollution from Beijing were not the main cause of the pollution in
the downstream districts. EB also told us that most of the pollution
locally produced in Beijing came from traffic emissions, which were
less serious than the industrial emissions in southern districts.

3) From Beijing to Huailaixian (Fig. 9D). In addition, the pollution
in Beijing also affected Huailaixian in the northwest region. According
to EA, Huailaixian is a clean city without heavy local emissions. The
pie charts in the pattern graphs (Fig. 9D1) implied that less than the
half of the pollutants from Beijing had caused a large portion of the
pollution in Huailaixian. The experts also investigated this pattern
extensively in the instance view and confirmed the hypothesis.

In conclusion, air pollution in Beijing is from both internal and
external sources while the external sources are more influential. Such
finding is consistent with the environmental science literature [31].

6.3 Expert Interviews

After the case studies, we conducted informal interviews with the
experts and gathered their comments and feedback regarding the visual
design, user interactions, and usability of the proposed system.

Visual design. All three experts agreed that AirVis could intuitively
depict the complex propagation processes of air pollution with the motif
glyphs, pattern glyphs, and pattern graphs, and present the detailed
information of propagation instances in terms of both spatial and tem-
poral dimensions. “Many interesting patterns are revealed with the
topology-pattern-instance hierarchy.” commented EA, “I believe our
current studies will benefit from this system.” EA and EB also praised
our system for being “aesthetically appealing”.

User interactions. All three experts indicated that the interactions
implemented in our system were very smooth. EC was particularly
impressed by the interactive pattern mining, where he could specify a
PM2.5 threshold and the system would return the extracted propagation
patterns in real-time. Moreover, EA and EB found that the district filter
was highly convenient in the district-centered analysis.

Usability. All three experts confirmed the usability of our system.
“The spatial granularity is much finer than the existing approaches,
which makes it possible to obtain deeper insights with this system.”
commented EC. Furthermore, EC suggested that we could further
improve the transportation simulation by adopting an ensemble model
that incorporates the results generated by HYSPLIT [52].

7 DISCUSSION

This section discusses the implications and limitations of our work. We
also share several important design lessons we learned.

Implications. To the best of our knowledge, AirVis is the first vi-
sual analytics system that efficiently incorporates users’ expertise in the
domain of air pollution propagation analysis. The availability of AirVis
significantly promotes the efficient exploration of large-scale pollution
propagation data and the acquisition of deep insights into the uncertain
propagation patterns. Moreover, our work is largely distinguished from
the state-of-the-art approaches by improving the spatial granularity of
air pollution propagation analysis to the station level and the temporal
granularity to an hourly resolution, and the topology detection and

uncertainty analysis features provided by our system enable experts to
identify and analyze new propagation patterns more effectively com-
pared with the existing tools. Such fine-grained analysis allows our
system to precisely capture the continuous propagation of air pollution
and facilitate the development of timely and accurate pollution control
policies, which may help reduce economic losses and even save lives.

Our approach can be generalized to address the similar problems that
involve the topology-driven analysis of massive small graphs. Applying
the MDL principle in extracting motifs effectively reduces the number
of graphs and summarizes these graphs by their corresponding topo-
logical representations with the corrections as visual hints. In addition,
the hierarchical exploration scheme we followed while designing our
system largely allievates users’ cognitive load in analyzing numerous
graphs and enables users to progressively obtain the overview of the
patterns and analyze the interesting details on demand.

Limitations. Three limitations are observed in our work. First,
a vectorized wind field is reconstructed from sparse meteorological
samples to simulate the air pollutant transportation. The sparsity may
result in noticeable inaccuracies in the simulation, particularly in the
areas with complex geographical conditions. This limitation can be
addressed by incorporating the fine-grained wind field data or a more
sophisticated interpolation method based on the terrain data. Second,
the distance thresholds used in the pollutant transportation modelling
is determined in advance based on the experts’ knowledge and the
density of monitoring stations. To establish more accurate modelling,
an interactive interface can be incorporated in the future work to allow
users to fine-tune the thresholds. Third, our approach simply estimates
the transported pollutants as a quantitative value, while the experts are
also interested in breaking down the value to find the actual sources
of air pollution (e.g., vehicles or factories). Source apportionment
methods [7] can be incorporated in the future for such functionality.

Design lessons. We conclude our design lessons learned from the
presentation of massive propagation networks. To address the scalabil-
ity issue that impedes the perception of significant patterns therein, we
organize the propagation graphs in a stratified way that utilizes their
innate hierarchy of common topology, frequent patterns, and instances,
and design visualizations accordingly to support leveled exploration
that imposes less cognitive load on users. Moreover, we visualize
the frequent motifs and patterns with carefully designed glyphs that
compactly summarize their attributes, empowering users to effectively
analyze data from multiple perspectives. The detailed instances are
expanded on demand. This approach coincides in spirit with the visual
information-seeking mantra [51] and once again confirms its effective-
ness in guiding the exploration of complex datasets.

8 CONCLUSION

In this study, we propose a novel visual analytics approach to incorpo-
rate domain knowledge in analyzing the uncertain propagation of air
pollution. By closely collaborating with the experts, we characterized
the user requirements in the topology-driven analysis of propagation
processes and derived a set of extensive design goals accordingly to
guide the subsequent visual design. Based on the requirements and
design goals, we developed AirVis, a visual analytics system that assists
users in hierarchically exploring and interpreting massive propagation
patterns extracted with a novel FSM-based pattern mining framework.
The effectiveness of our system is demonstrated via two case studies
conducted on the real-world dataset and the positive feedback received
from the experts. Our approach is also generalizable to other similar
problems that involve the topology-driven analysis of massive small
graphs. In the future, we would like to incorporate fine-grained atmo-
spheric data to obtain more accurate results and deploy our system
in the field to reveal the insights in pollution propagation to a wider
audience, including environmental scientists and government officials.
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